PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immobilization of Lycinibacillus fusiformis B26 cells in different matrices for use in turquoise blue HFG decolourization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The decolourization of Turquoise Blue HFG by immobilized cells of Lysinibacillus fusiformis B26 was investigated. Cells of L. fusiformis B26 were immobilized by entrapment in agar and calcium alginate matrices and attached in pumice particles. The effects of operational conditions (e.g., agar concentrations, cell concentrations, temperature, and inoculum amount) on microbial decolourization by immobilized cells were investigated. The results revealed that alginate was proven to be the best as exhibiting maximum decolourization (69.62%), followed by agar (55.55%) at 40°C. Pumice particles were the poorest. Optimum conditions for agar matrix were found: concentration was 3%, cell amount was 0.5 g and temperature was 40°C (55.55%). Ca-alginate beads were loaded with 0.5, 1.0 and 2.0 g of wet cell pellets and the highest colour removal activity was observed with 2.0 g of cell pellet at 40°C for alginate beads. Also, 0.5 and 1.0 g of pumice particles that were loaded with 0.25 and 0.5 g of cell pellets respectively were used and the results were found very similar to each other.
Słowa kluczowe
Rocznik
Strony
92--99
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
  • Pamukkale University, Turkey Faculty of Science and Arts, Department of Biology
autor
  • Pamukkale University, Turkey Faculty of Science and Arts, Department of Biology
  • Pamukkale University, Turkey Faculty of Technology, Department of Biomedical Engineering
  • Pamukkale University, Turkey Faculty of Science and Arts, Department of Biology
autor
  • Pamukkale University, Turkey Faculty of Science and Arts, Department of Biology
  • Pamukkale University, Turkey Faculty of Science and Arts, Department of Chemistry
autor
  • Pamukkale University, Turkey Faculty of Science and Arts, Department of Chemistry
Bibliografia
  • [1]. Abdel-Naby, M.A., Osman, M.Y. & Abdel-Fattah, A.F. (2011). Production of pullulanase by free and immobilized cells of Bacillus licheniformis NRC22 in batch and continuous cultures, World Journal of Microbiology and Biotechnology, 27, pp. 2903–2911.
  • [2]. Abraham, T.E., Jamuna, R., Bansilal, C.V. & Ramakrishna, S.V. (1991). Continuous synthesis of glucoamylase by immobilized fungal mycelium of Aspergillus niger, Starch-Starke, 43, pp. 113–116.
  • [3]. Adinarayana, K., Jyothi, B. & Ellaiah, P. (2005). Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique, AAPS PharmSciTech, 6, pp. 391–397.
  • [4]. Ayed, L., Khelifi, E., Jannetc, H.B., Miladi, H., Cheref, A., Achour, S. & Bakhrouf, A. (2010). Response surface methodology for decolorization of azo dye Methyl Orange by bacterial consortium: Produced enzymes and metabolites characterization, Chemical Engineering Journal, 165, pp. 200–208
  • [5]. Banat, I.M, Nigam, P., Singh, D. & Marchant, R. (1996). Microbial decolourization of textile dyes containing effluents, Bioresource Technology, 58, pp. 217–227.
  • [6]. Behera, S., Kar, S., Mohanty, R.C. & Ray, R.C. (2010). Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices, Applied Energy, 87, pp. 96–100.
  • [7]. Bisht, D., Yadav, S.K. & Darmwal, N.S. (2013). Optimization of immobilization conditions by conventional and statistical strategies for alkaline lipase production by Pseudomonas aeruginosa mutant cells: scale-up at bench-scale bioreactor level, Turkish Journal of Biology, 37, pp. 392–404.
  • [8]. Chacko, J.T. & Subramaniam, K. (2011). Enzymatic degradation of azo dyes-a review, International Journal of Environmental Science, 1, pp. 1250–1260.
  • [9]. Chandel, A.K., Chan, E.S., Rudravaram, R., Narasu, M.L., Rao, L.V. & Pogaku, R. (2007). Economics and environmental impact of bio-ethanol production technologies: an appraisal, Biotechnology and Molecular Biology Reviews, 2, pp. 14–32.
  • [10]. Chang, J.-S., Chou, C. & Chen, S.Y. (2001). Decolorization of azo dyes with immobilized Pseudomonas luteola, Process Biochemistry, 36, pp. 757–763.
  • [11]. Cheetham, P.S.J., Garrett, C. & Clark, L. (1985). Isomaltulose production using immobilized cells, Biotechnology and Bioengineering, 27, pp. 471–481.
  • [12]. Couto, S.R. (2009). Dye removal by immobilized fungi, Biotechnology Advances, 27, pp. 227–235.
  • [13]. Dogan, N.M., Bozbeyoglu, N., Arar, D., Akdogan, A.H., Topuz, M.C. & Beyatli, Y. (2013). Investigation of reactive dye Turquoise blue HFG removal with Lysinibacillus fusiformis B26 and detection of metabolites, Fresenius Environmental Bulletin, 22, 9.
  • [14]. Fiedurek, J. & Ilczuk, Z. (1991). Glucose oxidase biosynthesis using immobilized mycelium of Aspergillus niger, World Journal of Microbiology and Biotechnology, 7, pp. 379–84.
  • [15]. Harshad, S.L., Tatoba, R.W., Avinash, A.K. & Sanjay, P.G. (2012). Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium, International Biodeterioration & Biodegradation, 72, pp. 94–107.
  • [16]. Joseph, B., Ramteke, P.W. & Kumar, P.A. (2006). Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis, Journal of General and Applied Microbiology, 52, pp. 315–320.
  • [17]. Jouenne, T., Bonato, H., Mignot, L. & Junter, G.A. (1993). Cell immobilization in agar layer microporous membrane structures: growth kinetics of gel-entrapment culture and cell leakage limitation by microporous membrane, Applied Microbiology and Biotechnology, 38, pp. 478–481.
  • [18]. Kar, S. & Ray, R.C. (2008). Statistical optimization of a-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology, Polish Journal of Microbiolgy, 57, pp. 49–57.
  • [19]. Kar, S., Swain, M.R. & Ray, R.C. (2009). Statistical optimization of alpha-amylase production with immobilized cells of Streptomyces erumpens MTCC 7317 in Luffa cylindrical L. sponge discs, Applied Biochemistry and Biotechnology, 152, pp. 177–188.
  • [20]. Kariminiaae-Hamedaani, H.R., Sakurai, A. & Sakakibara, M. (2007). Decolorization of synthetic dyes by a new manganese peroxidase producing white rot fungus, Dyes and Pigments, 72, pp. 157–162.
  • [21]. Katzbauer, B., Narodoslawsky, B. & Moser, A. (1995). Classification system for immobilization techniques, Bioprocess Engineering, 12, pp. 173–179.
  • [22]. Khalid, A., Kausar, F., Arshad, M., Mahmood, T. & Ahmed, I. (2012). Accelerated decolorization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment, Applied Microbiology and Biotechnology, 96, pp.1599–1606.
  • [23]. Mohana, S., Shrivastava, S., Divecha, J. & Madamwar, D. (2008). Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium, Bioresource Technology, 99, pp. 562–569.
  • [24]. Nigam, J.N. (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells, Journal of Biotechnology, 80, pp. 189–193.
  • [25]. Novotny, C., Dias, N., Kapanen, A., Malachova, K., Vandrovcova, M., Itavaara, M. & Lima, N. (2006). Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes, Chemosphere, 63, pp. 1436–1442.
  • [26]. Park, J.K. & Chang, H.N. (2000). Microencapsulation of microbial cells, Biotechnology Advances, 18, pp. 303–319.
  • [27]. Puvaneswari, N., Muthukrishnan, J. & Gunasekaran, P. (2002). Biodegradation of benzidine based azodyes Direct red and Direct blue by the immobilized cells of Pseudomonas fluorescens D41, Indian Journal of Experimental Biology, 40(10), pp. 1131–1136.
  • [28]. Shin, M., Nguyen, T. & Ramsay, J. (2002). Evaluation of support materials for the surface immobilization and decoloration of amaranth by Trametes versicolor, Applied Microbiology and Biotechnology, 60, pp. 218–223.
  • [29]. Swapnil, S.P., Dayanand, C.K., Asmita, V.O. & Jyoti, P.J. (2011). Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies, Journal of Hazardous Materials, 186, pp. 713–723.
  • [30]. Vandevivere, P.C., Bianchi, R. & Verstraete, W. (1998). Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies, Journal of Chemical Technology and Biotechnology, 72, pp. 289–302.
  • [31]. Vassilev, N. & Vassileva, M. (1992). Production of organic acids by immobilized filamentous fungi, Mycological Research, 96, pp. 563–570.
  • [32]. Yang, Q., Yang, M., Pritsch, K., Yediler, A., Hagn, A., Schloter, M. & Kettup, A. (2003). Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates, Biotechnology Letters, 25, pp. 709–713.
  • [33]. Zou, H., Ma, W. & Wang, Y. (2015). A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation, Archives of Environmental Protection, 41, 4, pp. 33–39.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7612306-12f7-4c3d-b29e-706c6e994251
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.