Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The prediction of rock cuttability to produce the lignite deposits in underground mining is important in excavation. Moreover, the certain geographic locations of rock masses for cuttability tests are also significant to apply and compare the rock cuttability parameters. In this study, sediment samples of two boreholes (Hole-1 and Hole-2) from the Sagdere Formation (Denizli Molasse Basin) were applied to find out the cerchar abrasivity index (CAI), rock quality designations (RQD), uniaxial compressive strengths, Brazilian tensile strengths and Shore hardnesses. The Sagdere Formation deposited in the terrestrial to shallow marine conditions consists mainly of conglomerates, sandstones, shales, lignites as well as reefal limestones coarse to fine grained. A dataset from the fine grained sediments (a part of the Sagdere Formation) have been created using rock parameters mentioned in the study. Dataset obtained were utilized to construct the best fitted statistical model for predicting CAI on the basis of multiple regression technique. Additionally, the relationships among the rock parameters were evaluated by fuzzy logic inference system whether the rock parameters used in the study can be correlated or not. When comparing the two statistical techniques, multiple regression method is more accurate and reliable than fuzzy logic inference method for the dataset in this study. Furthermore, CAI can be predicted by using UCS, BTS, SH and RQD values based on this study.
Wydawca
Czasopismo
Rocznik
Tom
Strony
787--801
Opis fizyczny
Bibliogr. 44 poz., fot., rys., tab., wykr.
Twórcy
Bibliografia
- [1] Akgun F., Sozbilir H., 2001. A palynostratigraphic approach to the SW Anatolian molasse basin: Kale-Tavas molasse and Denizli molasses. Geodynamica Acta 14 (1-3), 71-93.
- [2] Akkiraz M.S., Akgun F., 2005. Palynology and age of the Early Oligocene units in Çardak–Tokça Basin, Southwest Anatolia, Paleoecological implications. Geobios, 38 (3), 283-299.
- [3] Alber M., 2008. Stress dependency of the Cerchar abrasivity index (CAI) and its effects on wear of selected rock cutting tools. Tunn Undergr Space Technol 23, 351-359.
- [4] Alpar R., 2017. Uygulamali cok değişkenli istatistiksel yöntemler. Detay Yayincilik, Turkey, 840.
- [5] Alvarez Grima, M., Babuska R., 1999. Fuzzy model for the prediction of unconfined compressive strength of rock samples. International Journal of Rock Mechanics and Mining Science 36, 339-349.
- [6] Alvarez Grima M., 2000. Neuro-Fuzzy Modeling in Engineering Geology. Rotterdam: A.A. Balkema. 244.
- [7] Armaghani D.J., Mohamad E.T., Momeni E., Narayanasamy M.S., Mohd F.M., 2015. An adaptive neuro-fuzzy inference system for predicting unconfinedcompressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ. 74, 1301-1319.
- [8] Armaghani D.J., Mohamad E.T., Momeni E., Monjezi M., Narayanasamy M.S., 2016. Prediction of the strength and elasticity modulus of granite through an expertartificial neural network. Arab. J. Geosci. 9 (48), 1-16.
- [9] Aydin D., 2014. Uygulamalı Regresyon Analizi-Kavramlar ve R Hesaplamaları. Nobel Yayınları, Ankara.
- [10] Bezdek J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York.
- [11] Buyukozturk S., 2011. Sosyal bilimler için veri analizi el kitabi. Ankara: Pegem Akademi.
- [12] Cerchar 1986. Centre d’Etudes et Recherches de Charbonnages de France. The Cerchar abrasiveness index, Verneuil 12S.
- [13] Coviello A., Lagioia R., Nova R., 2005. On the measurement of the tensile strength of soft rocks. Rock Mech. Rock Eng. 38 (4), 251-273.
- [14] Dan D.Q., Konietzky H., Herbst M., 2013. Brazilian tensile strength tests on some anisotropic rocks. Int. J. Rock Mech. Min. Sci. 58, 1-7.
- [15] Deere D.U., 1964. Technical description of rock cores for engineering purposes. Rock Mechanics and Engineering Geology 1 (1), 16-22.
- [16] Deere D.U., Miller R.P., 1966. Engineering classification and index properties for intact rock. technical report no. afwl-tr-65-116, University of Illinois, Contract AF 29(601)-6319.
- [17] Demuth H., Beale M., Hagan 2005. MATLAB Version 7.3.0: Fuzzy Logic Toolbox for Use with Matlab. The Mathworks.
- [18] Ersoy H., Kanik D., 2012. Multicriteria decision-making analysis based methodologyfor predicting carbonate rocks uniaxial compressive strength. Earth Sci. Res. J.16 (1), 65-74.
- [19] Finol J., Guo Y.K., Jing X.D. 2001. A rule based fuzzy model for the prediction of petrophysical rock parameters. Journal of Petroleum Science and Engineering 29, 97-113.
- [20] Gokceoglu, C. 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition. Engineering Geology 66, 39-51.
- [21] Gokceoglu C., Zorlu K. 2004. A fuzzy model to predict the uniaxial compressive strength and modulus of elasticity of a problematic rock. Engineering Application of Artificial Intelligent 17, 61-72.
- [22] Hakyemez H.Y., 1989. Kale-Kurbalık (Güney Batı Denizli) Bölgesindeki Senozoyik Yaslı Çökel Kayaların Jeolojisi ve Stratigrafisi. Bull. Min. Res. Expl. Inst. Turkey 109, 9-21.
- [23] Hondros G., 1959. The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust. J. Appl. Sci. 10, 243-268.
- [24] Islamoğlu Y., Atay G., Gedik F., Aydın A., Hakyemez A., Babayiğit S., Sarıkaya H., 2005. Batı Toroslardaki denizel Oligosen-Miyosen biyostratigrafisi (Denizli). Mineral. Reasearc and Exploration report 10763, 155, Ankara.
- [25] Islamoğlu Y., Gedik F., Aydın A., Atay G., Hakyemez A., Babayiğit S., 2006. Foraminifera, Nannoplankton, Coral and Ostrocoda Biostratigraphy of the Oligocene Lagoonar and Marine Deposits in Denizli Region (SW Turkey). 59. Geological Congress of Turkey, March 20-24,The Chamber of Geological Engineers, Congress Center of General Directorate of MTA, 245-249, Ankara.
- [26] Islamoğlu Y., Gedik F., Çulha G., 2007. Mollusc, benthic foraminifer and ostracod faunas of the early Miocene deposits in Denizli region and biostratigraphic pre-results (SW Anatolia, Turkey). 16th International Petroleum and Naural Gas Congress & Exhibition of Turkey, 29-31 May 2007, Ankara, 91-93.
- [27] ISRM, 1981. The complete ISRM suggested methods for rock characterization, testing and monitoring. Standard Book.
- [28] Karayigit A.I., Littke R., Querol X., Jones T., Oskay R.G., Christanis K., 2017. The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. Int. J. Coal Geol. 173, 110-128.
- [29] Kasling H., Thuro K., 2010. Determining abrasivity of rock and soil in the laboratory. In: 11th IAEG Congress, Auck-land, New Zealand 235,1973-1980.
- [30] Michalakopoulos T., Anagnostou V., Bassanou M., Panagiotou G., 2006. The influence of steel styli hardness on the Cerchar abrasiveness index value. Int. J. Rock Mech. Min. Sci. 43, 321-327.
- [31] Nefeslioglu H.A., Gokceoglu C., Sonmez H., 2003. A Mamdani model to predict the weighted joint density. Lecture Notes in Artificial Intelligence 2773, 1052-1057.
- [32] Plinninger R., Kasling H., Thuro K., 2004. Wear prediction in hardrock excavation using the Cerchar Abrasiveness Index (CAI). In: Proceedings of the Eurock 2004 and 53rd Geomechanic Colloquium, p. 599-604.
- [33] Rostami J., Ghasemi A., Gharahbagh E.A., Dogruoz C., Dahl F., 2014. Study of Dominant Factors Affecting Cerchar Abrasivity Index. Rock Mech. and Rock Eng. 47, 1905-1919.
- [34] Setnes M., Babuska R., Verbruggen H.B., 1998. Rule-based modeling: precision and transparency. IEEE Transactions on Systems Man and Cybernetics, Part C, 28, 165-169.
- [35] Sonmez H., Gokceoglu C., Ulusay R., 2003. An application of fuzzy sets to the geological strength index (GSI) system used in rock engineering. Engineering Applications of Artificial Intelligence 16, 251-269.
- [36] Sozbilir H., 1997. Stratigraphy and sedimentology of the Tertiary sequences in the northeastern Denizli province (south-west Turkey). PhD Thesis, Dokuz Eylül University, Izmir.
- [37] Sozbilir H., 2005. Oligo-Miocene extension in the Lycian orogen: evidence from the Lycian molasse basin. SW Turkey. Geodinamica Acta 18, 255-282.
- [38] Sugeno M., Yasukawa A., 1993. A fuzzy-logic based approach to qualitative modelling. IEEE Trans. Fuzzy Syst. 1, 7-31.
- [39] Thuro K., Singer J., Kasling H., Bauer M., 2007. Determining abrasivity with the LCPC Test. Proceedings of the 1stCanada-US rock mechanics symposium, 27.
- [40] Torok A., Vasarhelyi B., 2010. The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng. Geol. 115, 237-245.
- [41] Tutmez B., Hatipoglu Z. 2007. Spatial estimation model of porosity. Computers and Geosciences 33, 465-474.
- [42] Wang Q.Z., Jia X.M., Kou S.Q., Zhang Z.X., Lindqvist P.A., 2004. The flattened Brazilian disc specimen used for test-ing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int. J. Rock Mech. Min. Sci. 41 (2), 245-253.
- [43] Wisetsaen S., Walsri C., Fuenkajorn K., 2015. Effects of loading rate and temperature on tensile strength and deformation of rock salt”. Int. J. Rock Mech. Min. Sci. 73, 10-14.
- [44] Yagiz S., 2010. Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness. Expert Systems with Applications 37 (3), 2265-2272.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7589d01-75c9-4e27-b854-d6b85422a6bb