PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxidant-Accelerated Polymerization of Dopamine for Coating DNAN with Enhanced Toughness

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the significantly reduced toxicity and shock sensitivity compared to TNT, DNAN is getting more and more attention in the study of insensitive munitions. However, the brittleness problem of DNAN limits its wide application. Inspired by mussels, DNAN particles with a thin and uniform coating based on the self-polymerization of dopamine were prepared by an oxidant-accelerated method in this work. XRD patterns indicated that the DNAN polymorph did not change during the coating process. FT-IR and XPS spectra manifested that the PDA was successfully distributed on the crystal surface. The results of TG-DSC analysis demonstrated that the mass ratio of PDA coating was as low as 1.71%. Meanwhile, Brazilian disk splitting test showed that the tensile strength, tensile strain, and fracture energy of DNAN@PDA cylinder were 16.1%, 32.0% and 53.0% higher than those of pure DNAN cylinder, respectively. The morphology of fracture surface after tensile test indicated that toughness fracture occurred in DNAN@PDA cylinder, while remarkable brittle fracture occurred in pure DNAN cylinder. The surface modification method could enhance the toughness of DNANbased explosives, and the fast fabrication of DNAN@PDA particles on a large scale could satisfy the application demands of insensitive munitions.
Rocznik
Strony
210--229
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, China
Bibliografia
  • [1] Meng, J. J.; Zhou, L.; Miao, F. C. Review of the Essential Characteristics of 2,4-Dinitroanisole. Cent. Eur. J. Energ. Mater. 2023, 20(1): 50-74; https://doi.org/10.22211/cejem/1 62865.
  • [2] Osmar, M.; Warren, M. K.; Savia, G.; Reyes, S.; Eugene, A. M.; Leif, A.; Jim, A.F. Covalent Binding with Model Quinone Compounds Unveils the Environmental Fate of the Insensitive Munitions Reduced Product 2,4-Diaminoanisole (DAAN) Under Anoxic Conditions. J. Hazard. Mater. 2021, 413: paper 125459; https://doi.org/10.1016/j.jhazmat.2021.125459.
  • [3] Viktor, P.; Warren, K.; Samuel, B.; Hayden, M.; Edward, H.; Favianna, C.; Stephen, M.M.; Katerina, D. Transport of Insensitive Munitions Constituents, NTO, DNAN, RDX, and HMX in Runoff and Sediment Under Simulated Rainfall. Sci. Total Environ. 2023, 866: paper 161434; https://doi.org/10.1016/j.scitotenv.2023.161434.
  • [4] Sabine, G.D.; Manon, S.; Jalal, H.; Louise, P.; Guy, A.; Sonia, T.; Geoffrey, I.S. Ecotoxicological Assessment of a High Energetic and Insensitive Munitions Compound: 2,4-Dinitroanisole (DNAN). J. Hazard. Mater. 2013, 262: 143-150; https://doi.org/10.1016/j.jhazmat.2013.08.043.
  • [5] Trzciński, W.; Cudziło, S.; Dyjak, S.; Nita, M. A Comparison of the Sensitivity and Performance Characteristics of Melt-pour Explosives with TNT and DNAN Binder. Cent. Eur. J. Energ. Mater. 2014, 11 (3): 443-455; https://doi.org/10.1109/JLT.2014.2342251.
  • [6] Yang, Y.; Duan, Z.P.; Li, S.R.; Han, Y.; Huang, H.; Zhang, L.S.; Huang, F.L. Detonation Characteristics of an Aluminized DNAN-Based Melt-Cast Explosive. Propellants Explos. Pyrotech.2023, 48: paper e202200088; https://doi.org/10.1002/prep.202200088.
  • [7] Eric, J.B.; Paul, G.T.; Tifany, L.T.; Kyle, C.E.; David, A.D.; Joseph, J.P.; Xu, W.Q. Computational Predictions of the Hydrolysis of 2,4,6-Trinitrotoluene (TNT) and 2,4-Dinitroanisole (DNAN). J. Phys. Chem. A. 2022, 126: 9059-9075; https://doi.org/10.1021/acs.jpca.2c06014.
  • [8] Manoj, K.S. Computational Prediction of Electronic Excited-State Structures and Properties of 2,4-Dinitroanisole (DNAN). Struct. Chem. 2016, 27: 1143-1148; https://doi.org/10.1007/s11224-015-0736-z.
  • [9] Shi, D.N.; Chen, L.Z.; Wang, J.L.; Chen, J.; Pan, H.X. Thermal Properties Study of Low-Melting-Point-DNAN and Analysis of Solidification Behavior of High-Melting-Point-DNAN. Propellants Explos. Pyrotech. 2021, 46: 1415-1420; https://doi.org/10.1002/prep.202100091.
  • [10] Zhu, D.L.; Zhou, L.; Zhang, X.R. Rheological Behavior of DNAN/HMX Melt-Cast Explosives. Propellants Explos. Pyrotech. 2019, 44: 1583-1589; https://doi.org/10.1002/prep.201900117.
  • [11] Nathan, S.; Aditi, P.; Ramesh, G. Biodegradation of Insensitive Munition (IM) Formulations: IMX-101 and IMX-104 Using Aerobic Granule Technology. J. Hazard. Mater. 2023, 449: paper 130942; https://doi.org/10.1016/j.jhazmat.2023.130942.
  • [12] Benjamin, K.; Stephen, M.M.; Li, L.; Viktor, P.; Warren, K.; Samuel, B.; Katerina, D. A Laboratory Rill Study of IMX-104 Transport in Overland Flow. Chemosphere 2023, 310: paper 136866; https://doi.org/10.1016/j.chemosphere.2022.136866.
  • [13] Michael, R.W.; Marianne, E.W.; Susan, T.; Charles, A.R.; David, B.R.; Jan, E.Z.; Sonia, T.; Guy, A.; Diaz, E. Characterization of PAX-21 Insensitive Munition Detonation Residues. Propellants Explos. Pyrotech. 2013, 38: 399-409; https://doi.org/10.1002/prep.201200150.
  • [14] Zhu, D.L.; Zhou, L.; Zhang, X.R.; Zhao, J.Y. Simultaneous Determination of Multiple Mechanical Parameters for a DNAN/HMX Melt-Cast Explosive by Brazilian Disc Test Combined with Digital Image Correlation Method. Propellants Explos. Pyrotech. 2017, 42: 864-872; https://doi.org/10.1002/prep.201700010.
  • [15] Li, S.R.; Duan, Z.P.; Gao, T.Y.; Wang, X.J.; Ou, Z.C.; Huang, F.L. Size Effect of Explosive Particle on Shock Initiation of Aluminized 2,4-Dinitroanisole (DNAN)-based Melt-cast Explosive. J. Appl. Phys. 2020, 128: paper 125903; https://doi.org/10.1063/5.0016310.
  • [16] Daniel, W.W.; Paul, L.C.; Colin, R.P. Preventing Irreversible Growth of DNAN by Controlling Its Polymorphism. Proc. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2017.
  • [17] Ma, Q.; Shu, Y.J.; Luo, G.; Chen, L.; Zheng, B.H.; Li, H.R. Toughening and Elasticizing Route of TNT Based Melt Cast Explosives. Chin. J. Energet. Mater. 2012, 20: 618-629; https://doi.org/10.3969 /j.issn.006-9941.2012.05.022.
  • [18] Meng, J.J.; Jiang, Z.M.; Zhang, X.R.; Zhou, L. Effect of Functional Agents on the Performance of 2,4-Dinitroanisole-based Melt-cast Explosives. Acta Armamentarii 2016, 37: 424-430; https://doi.org/10.3969 /j.issn.1000-1093.2016.03.006.
  • [19] Yang, Z.J.; Ding, L.; Wu, P.; Liu, Y.; Nie, F.D.; Huang, F.L. Fabrication of RDX, HMX and CL-20 Based Microcapsules via In Situ Polymerization of Melamine-Formaldehyde Resins with Reduced Sensitivity. Chem. Eng. J. 2015, 268: 60-66; https://doi.org/10.1016/j.cej.2015.01.024.
  • [20] He, G.S.; Yang, Z.J.; Pan, L.P.; Zhang, J.H.; Liu, S.J.; Yan, Q.L. Bioinspired Interfacial Reinforcement of Polymer-based Energetic Composites with a High Loading of Solid Explosive Crystals. J. Mater. Chem. A. 2017, 26: 13499-13510; https://doi.org/10.1039/c7ta03424e.
  • [21] Chen, L.; Li, Q.; Liu, S.S.; Bei, Y.Y.; Ding, Y.J.; Liu, J.; He, W.D. Bio-inspired Synthesis of Energetic Microcapsules Core-Shell Structured with Improved Thermal Stability and Reduced Sensitivity via In Situ Polymerization for Application Potential in Propellants. Adv. Mater. Interfaces, 2021, 8: paper 2101248; https://doi.org/10.1002/admi.202101248.
  • [22] He, G.S.; Li, X.; Bai, L.F.; Meng, L.; Dai, Y.; Sun, Y.S.; Zeng, C.C.; Yang, Z.J.; Yang, G.C. Multilevel Core-Shell Strategies for Improving Mechanical Properties of Energetic Polymeric Composites by the “Grafting-from” Route. Compos. Part B. 2020, 191: paper 107967; https://doi.org/10.1016/j.compositesb.2020.107967.
  • [23] Lin, C.M.; Gong, F.Y.; Qian, W.; Huang, X.N.; Tu, X.Q.; Sun, G.A.; Bai, L.F.; Wen, Y.S.; Yang, Z.J.; Li, J.; Guo, S.Y. Tunable Interfacial Interaction Intensity: Construction of a Bio-inspired Interface Between Polydopamine and Energetic Crystals. Compos. Sci. Technol. 2021, 211: paper 108816; https://doi.org/10.1016/j.compscitech.2021.108816.
  • [24] Liu, Y.L.; Ai, K.L.; Lu, L.H. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114: 5067-5115; https://doi.org/10.1021/cr400407a.
  • [25] Zhu, Q.; Xiao, C.; Li, S.B.; Luo, G. Bioinspired Fabrication of Insensitive HMX Particles with Polydopamine Coating. Propellants Explos. Pyrotech. 2016, 41: 1092-1097; https://doi.org/10.1002/prep.201600021.
  • [26] Zhu, Q.; Wu, S.L.; Xiao, C.; Xie, X.; Li, S.B.; Luo, G. Bioinspired Improving Interfacial Performances of HMX, TATB and Aluminum Powders with Polydopamine Coating. Chin. J. Energet. Mater. 2019, 27: 949-954; https://doi.org/10.11943/CJEM2019179.
  • [27] Xiao, C.; Zhu, Q.; Xie, X.; Luo, G.; Li, S.B. Polydopamine Coated on Aluminum Powders and Its Disperse Stability in HTPB. Chin. J. Explos. Propellants, 2017, 40: 60-64; https://doi.org/10.14077/j.issn.1007-7812.2017.08.010.
  • [28] Duan, S.Y.; Wang, D.H.; Jiang, Q.P.; Xiao, C.; Liu, H.H.; Guo, Y.; Li, S.B.; Zhu, Q. Oxidant-Accelerated Polydopamine Modification Process for the Fast Fabrication of PDA on HMX with Improved Mechanical Stability. Propellants Explos. Pyrotech. 2021, 46: 751-757; https://doi.org/10.1002/prep.202000095.
  • [29] Yu, Q.; Zhao, C.D.; Zhu, Q.; Sui, H.L.; Yin, Y.; Li, J.S. Influence of Polydopamine Coating on the Thermal Stability of 2,6-Diamino-3,5-dinitropyrazine-1-oxide Explosive Under Different Heating Conditions. Thermochim. Acta 2020, 686: paper 178530; https://doi.org/10.1016/j.tca.2020.178530.
  • [30] Jia, K.H.; Liu, Y.C.; Chai, T.; Yu, Y.W.; Jing, S.M.; Wu, P.F.; He, J.X.; Zhang, W. Fast Polymerization of Dopamine for Coating on ANPZO Surface with Excellent Thermal Stability and Mechanical Properties. Propellants Explos. Pyrotech. 2022, 47: paper e202100279; https://doi.org/10.1002/prep.202100279.
  • [31] Zeng, C.C.; Yang, Z.W.; Liu, J.H.; Ding, L.; Hao, S.L.; Gong, F.Y.; Yang, Z.J. Study on Mechanical Improvement of CL-20 Energetic Co-Crystals Based PBX by Surface Modification. Propellants Explos. Pyrotech. 2022, 48: paper e202200154; https://doi.org/10.1002/prep.202200154 .
  • [32] Daniel, W.W.; Paul, L.C.; Karl, S.H.; Colin, R.P. Controlling a Polymorphic Transition in 2,4-Dinitroanisole Using Crystal Doping. Proc. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2015.
  • [33] P’yanova, L.G.; Drozdov, V.A.; Sedanova, A.V.; Kornienko, N.V. An X-ray Photoelectron Spectroscopic Study of the Poly-N-vinylpyrrolidone Desorption from the Surface of a Granulated Carbon Sorbent. Russ. J. Appl. Chem. 2019, 92: 940-945; https://doi.org/10.1134/S1070427219070097.
  • [34] Abdul, G.L.; Mohammed, A. M.; Osama, S. On the Application of Two-dimensional Correlation Spectroscopy to Analyze X-ray Photoelectron Spectroscopic Data. J. Polym. Res. 2022, 29: 11; https://doi.org/10.1007/s10965-021-02857-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a754cbea-5859-4cc6-9092-3dbbeab08cef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.