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Abstract: Due to the significantly reduced toxicity and shock sensitivity compared 
to TNT, DNAN is getting more and more attention in the study of insensitive 
munitions. However, the brittleness problem of DNAN limits its wide application. 
Inspired by mussels, DNAN particles with a thin and uniform coating based on 
the self-polymerization of dopamine were prepared by an  oxidant-accelerated 
method in this work. XRD patterns indicated that the DNAN polymorph did not 
change during the coating process. FT-IR and XPS spectra manifested that the 
PDA was successfully distributed on the crystal surface. The results of TG-DSC 
analysis demonstrated that the mass ratio of PDA coating was as low as 1.71%. 
Meanwhile, Brazilian disk splitting test showed that the tensile strength, tensile 
strain, and fracture energy of DNAN@PDA cylinder were 16.1%, 32.0% and 
53.0% higher than those of pure DNAN cylinder, respectively. The morphology 
of fracture surface after tensile test indicated that toughness fracture occurred in 
DNAN@PDA cylinder, while remarkable brittle fracture occurred in pure DNAN 
cylinder. The surface modification method could enhance the toughness of DNAN-
based explosives, and the fast fabrication of DNAN@PDA particles on a large 
scale could satisfy the application demands of insensitive munitions.

Keywords: insensitive munitions, 2,4-dinitroanisole, DNAN, polydopamine, 
toughness fracture, mechanical properties

Central European Journal of Energetic Materials
ISSN 1733-7178; e-ISSN 2353-1843
Copyright © 2024 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland



211Oxidant-Accelerated Polymerization of Dopamine for Coating DNAN...

Copyright © 2024 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland

1	 Introduction

Security accidents happened during use, storage and transportation of 
munitions will cause huge casualties and property losses, so the demand for 
insensitive munitions (IM) is more and more urgent [1-3]. Compared with 
2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN) has significantly reduced 
toxicity and sensitivity to shock and impact [4-8], and is an important insensitive 
energetic compound [9, 10]. Currently, DNAN has been applied in the insensitive 
explosive formulations such as IMX-101, IMX-104 and PAX-21 [11-13].

However, the brittleness problem of traditional melt-cast explosive still exists 
in DNAN [14]. When the explosive charge with poor toughness is subjected to 
friction and shear stress caused by strong overload, it is easy to generate damage 
and micro-cracks, thus forming hot spots and reducing the safety of ammunitions 
[15, 16]. Therefore, it is of great significance to improve the toughness of DNAN 
to promote its application. 

It is a conventional method to improve the toughness by coating energetic 
crystals with appropriate amount of polymer [17,  18], but the coverage of 
energetic crystal is usually low, and interfacial interactions between polymer and 
energetic crystal are unsatisfactory. Recently, in situ polymerization method has 
attracted considerable interests in the field of surface modification for explosive 
crystals [19, 20]. Although in situ polymerization technique could improve the 
coverage to a certain extent, the weaker van der Waals interactions between 
explosive crystal and polymer could not significantly improve the toughness. 
Therefore, it is essential to develop a new strategy to modify energetic crystals 
with novel strong adhesion materials.

Inspired by the super adhesion of mussels, polydopamine (PDA) has been 
demonstrated to construct thin, uniform, full-covered coating layer on the surface 
of energetic particles [21-23]. The PDA coating layer enhances the interfacial 
interactions between energetic crystal and binder because of its diverse active 
groups such as ‒OH and ‒NH2 [24]. In our previous work, surface modification 
of HMX, TATB and aluminum powder was carried out by self-polymerization 
of dopamine, indicated that a PDA surface layer could reduce the mechanical 
sensitivity of HMX [25], enhance the tensile strength of TATB-based PBX 
cylinder [26], and slow down the sedimentation of aluminum powder in HTPB 
liquid phase [27]. What’s more, we developed an oxidant-accelerated method 
to obtain fast PDA surface modification of HMX particles within 5 min [28], 
showing a capability to fabricate HMX@PDA particles on a large scale. 
Until now, a lot of works have been studied on the research about energetic 
materials coated with PDA, such as RDX, CL-20, LLM-105 and 2,6-diamino-
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3,5-dinitropyrazine-1-oxide (ANPZO) [29-31]. Therefore, it is reasonable to 
speculate that the advantages of PDA coating may provide an alternative method 
for reducing the brittleness of DNAN.

Herein, we demonstrate a simple and quick method to prepare interfacial 
enhanced DNAN@PDA particles based on the oxidant-accelerated self-
polymerization process of dopamine. The surface of DNAN particles was 
homogeneously covered by the formed PDA coating. The prepared particles 
showed stable physical properties, though the PDA coating was very thin. The 
DNAN@PDA cylinder manifested higher tensile strength and remarkable feature 
of toughness fracture. The findings in this study offer a facile and alternative 
method for the large scale manufacture of toughened DNAN particles.

2	 Experimental Sections

2.1	 Materials
DNAN was produced by Dongfang Chemical Industry Group Co., Ltd. Tested 
DNAN has a melting point of 94-96 °C and a density of 1.52 g/cm3, with a purity 
of 99.6 ±0.3%. Dopamine hydrochloride (DA), sodium periodate (NaIO4) and 
2-amino-2-hydroxymethylpropane-1,3-diol (Tris) were provided by Aladdin 
Chemical Ltd. All reagents were used as-received without further purification. 

2.2	 Preparation of the DNAN@PDA particles
The original DNAN particles were washed with deionized water and ethanol for 
several times and dried at 50 °C before use. The reaction solution consisted of 
DA (8 mmol) and Tris (40 mmol) dissolved in deionized water (200 mL). And 
then NaIO4 (16 mmol) was added as an oxidant. To this solution, DNAN (10 g) 
was added and stirred for 5 min using stirrer paddle with 100 rpm to produce 
DNAN@PDA particles [28]. The resultant particles were washed with 50 mL 
deionized water three times and dried at 50 °C for 6 h for further characterizations.

2.3	 Characterizations
The morphologies of pristine DNAN particles and PDA modified DNAN 
particles were observed by a scanning electron microscope (CamScan Apollo 
300). The samples were randomly selected and taped to the sample table with 
conductive tape, then sputter coated with gold for 40 s at a current of 20 mA for 
further analysis.

Fourier transform infrared spectrometer (FT-IR) spectra were carried out 
on a BRUKER VERTEX70 instrument by transmission method from 500 to 
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4000 cm‒1, 32 scans were accumulated in all cases, with a spectral resolution of 
4 cm‒1. DNAN and DNAN@PDA particles were mixed with KBr powders, and 
then pressed at 10 MPa for 3-5 min.

X-ray photoelectron spectroscope (XPS) spectra were performed on 
a Thermo ESCACAB250 instrument. TG-DSC measurements were recorded with 
a NETZSCH STA 448 C instrument from room temperature to 500 °C (heating 
rate of 10 °C/min and N2 atmosphere). X-ray diffraction (XRD) patterns were 
collected on a BRUKER D8 instrument using Cu Kα source.

The pristine DNAN and DNAN@PDA powders were cold-pressed into 
cylinder in size of Φ20×6 and Φ20×20 mm for Brazilian test and compression 
test. The molding specific pressure was 180 MPa and the holding time was 
30 min. The Brazilian disk splitting test and compression test were performed 
on an explosion-proof modified universal testing machine. Both tests used a rate 
of 0.5 mm/min, and curved platens were used in Brazilian test.

3	 Results and Discussion

3.1	 Morphologies of pristine DNAN and as-prepared DNAN@PDA 
particles

After being stirred in dopamine-NaIO4-Tris buffer solution, the as-prepared 
DNAN@PDA particles displayed a dark brown appearance due to the formation 
of a PDA coating on the DNAN surface. The median particle diameters (d50) 
of DNAN and DNAN@PDA are 376.6 and 347.9 µm, respectively. The 
morphologies of the DNAN particles before and after coating were observed 
by SEM measurements (Figure 1), showing that the shapes of DNAN and 
DNAN@PDA particles have no change. After reaction, the surface of DNAN 
particles was obviously covered with a coating film.
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(a)                                                       (d)

 
(b)                                                       (e)

 
(c)                                                       (f)

Figure 1.	 SEM images of the DNAN (a-c) and DNAN@PDA (d-f) particles
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3.2	 Structures of pristine DNAN and as-prepared DNAN@PDA 
particles

XRD patterns of the DNAN and DNAN@PDA particles confirmed that the 2θ 
values of 14.01°, 15.97°, 18.79°, 22.41°, 24.86° and 26.23° were consistent with 
DNAN-I type [32] for both in the region of 10-50° (Figure 2). The results of the 
XRD patterns indicated that the PDA coating did not change the polymorph of 
DNAN particles.
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Figure 2.	 XRD patterns of the DNAN and DNAN@PDA particles

TG-DSC measurements showed decomposition processes of the samples 
at increasing temperatures. But in an open crucible, DNAN would evaporate 
before it decomposes, and then dissipate with the gas flow (Figure 3). The mass 
losses for the DNAN and DNAN@PDA before 500 °C were 100% and 98.99%, 
respectively. The PDA polymer was also measured by TG/DSC method under the 
same condition as DNAN@PDA, and the results were showed in Figure 4. PDA 
began to decompose slowly from about 250 °C, and the weight loss was 41.1% 
when the temperature rose to 500 °C. Taking into account the decomposition of 
PDA itself, the content of PDA coating was approximately 1.71%. In order to 
study the effect of PDA coating on thermal decomposition performance of DNAN, 
a sealed crucible was used in the DSC test, and the results were showed in Figure 
5. It manifested that PDA coating had no effect on the melting temperature of 
DNAN, and the peak decomposition temperature of DNAN@PDA was reduced 
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by 23.4 °C. But the onset decomposition temperature of DNAN@PDA is over 
250 °C, and the peak decomposition temperature reaches 328.2 °C, showing that 
DNAN@PDA has good thermal stability.
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Figure 3.	 DSC (a) and TG (b) results of pristine DNAN and DNAN@PDA 

(in open crucible)
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Figure 4.	 DSC-TG results of PDA (in open crucible)
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Figure 5.	 DSC results of pristine DNAN and DNAN@PDA (in sealed crucible)
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3.3	Surface characteristics of pristine DNAN and as-prepared 
DNAN@PDA particles

The presence of the PDA coating on the surface of the DNAN particles was 
demonstrated by FT-IR and XPS spectra of the DNAN and DNAN@PDA 
particles. As shown in Figure 6, the peaks at 1522 and 1342 cm‒1 are attributed 
to the stretching vibration of nitrobenzene. The absorption bands at 745, 835 and 
1605 cm‒1 are ascribed to the bending vibrations of C‒N, C‒N‒O, and benzene 
skeleton vibration, whereas absorption bands at 1072 and 1282 cm‒1 belong to the 
symmetrical and anti-symmetric stretching vibration of phenyl ether. The peak 
at 3090 cm‒1 is attributed to the stretching vibration of aromatic hydrocarbon. 
The peak at 921 cm‒1 belongs to the out-plane bending vibration of aromatic 
hydrocarbon, whereas absorption bands at 1072 and 1282 cm-1 are both ascribed 
to its in-plane bending vibration. The main difference of functional group between 
PDA coating and DNAN is N‒H group, whose absorption peak coincides with 
nitrobenzene in DNAN, so the characteristic peaks of DNAN@PDA are basically 
consistent with that of DNAN.
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Figure 6.	 FT-IR spectra of the DNAN and DNAN@PDA particles

The changes as a result of the coating on the DNAN particles were further 
confirmed by XPS. Table 1 showed the comparison of the element content of the 
particle surface. The average carbon atom content on the DNAN surface increased 
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from 55.26% to 64.96% and the average contents of oxygen and nitrogen atoms 
decreased after modification because of the high carbon atom content for PDA. 
Figures 7 and 8 showed the XPS spectra of DNAN and DNAN@PDA particles. 
Survey scans revealed the elements of C, N, and O on the surface of the particles. 
The C1s spectrum of DNAN showed typical components of C‒C (284.1 eV), 
C‒N (285.1 eV), and C‒O (286.0 eV), which were also detected on the surface 
of DNAN@PDA particles. The extra component of C=O (288.0 eV) [33] was 
derived from the PDA coating. This deduction was also supported by the peaks 
at 530.4 and 533.1 eV in the O1s spectrum, corresponding to C=O and C‒OH, 
respectively. The peaks at 532.4 eV of DNAN@PDA and 532.8 eV of DNAN 
were both corresponded to C‒O. The peak at 531.8 eV in the O1s spectrum 
of DNAN was corresponded to N‒O, which was also supported by the peak 
at 404.8 eV in the N1s spectrum. The N1s spectrum of DNAN@PDA could 
be divided into two components at 399.4 and 405.6 eV, corresponding to C‒N 
and –NH2, respectively [34]. The presence of C‒OH, C=O and ‒NH2 species 
suggested the PDA coating on the surface of DNAN particles after modification. 
These diverse active groups in the PDA coating could serve as anchors for further 
attachment and reaction, which could improve the adhesion between energetic 
particles in cylinder.

Table 1.	 Average element content of DNAN and DNAN@PDA particle 
surface

Samples Average element content on the surface [%]
C N O

DNAN 55.26 12.93 31.81
DNAN@PDA 64.96 10.87 24.17
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Figure 7.	 XPS spectra of DNAN (a) and DNAN@PDA (b) particles
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Figure 8.	 Survey scans on the surface of DNAN (a-c) and DNAN@PDA (d-f) 

particles
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3.4	 Mechanical properties of compressed DNAN and DNAN@PDA 
cylinder 

In order to investigate the influence of PDA coating on mechanical properties 
of explosive, DNAN and DNAN@PDA cylinder were compressed, followed by 
the test of tensile and compressive properties. The actual density of the cylinder 
was 97.5% of the theoretical density. As shown in Table 2, the tensile strength 
of DNAN@PDA cylinder was enhanced by 16.1% and the tensile strain was 
improved by 32.0% compared to DNAN cylinder, while the tensile modulus was 
decreased for a little. As to the compressive property (Table 3), the compression 
strength and modulus of DNAN@PDA cylinder were both lower than DNAN 
cylinder, and the degree of reductions were 10.5% and 22.5%, respectively. But 
the compression strain increased by 16.6%. 

Fracture energy refers to the energy required by the crack of specimen 
extend per unit area under tensile load, which is equal to the area contained 
under the load-displacement curve. The stress-strain curves showed in Figure 
9 was converted into load-displacement curves using the following formulas.

 

 

𝐹𝐹𝐹𝐹 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
2

          (1) 

 

𝑠𝑠𝑠𝑠 = εD           (2) 

� (1)

s = εD� (2)

where F represents the load applied to the specimen (in N), D and H refer to the 
diameter and thickness of the specimen (in mm), represents the tensile strength 
of the specimen (in MPa), s refers to the displacement of the specimen (in mm) 
and ε refers to the strain of the specimen (in %).

The fracture energy of DNAN cylinder and DNAN@PDA cylinder were 
obtained by integrating the area under the load-displacement curves, which were 
110.6 and 169.2 N/mm, respectively. The latter represented a 53.0% increase 
over the former. The compared results revealed a better tensile property of the 
cylinder prepared from DNAN@ PDA particles, implying the brittleness of the 
DNAN@PDA cylinder was weakened.

Table 2.	 Tensile properties of compressed DNAN and DNAN@PDA cylinder

Samples Tensile strength 
[MPa]

Tensile strain
[%]

Tensile modulus 
[GPa]

DNAN 2.05 0.025 5.52
DNAN@PDA 2.38 0.033 5.20
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Table 3.	 Compression properties of compressed DNAN and DNAN@PDA 
cylinder

Samples Compression 
strength [MPa]

Compression 
strain [%]

Compression 
modulus [GPa]

DNAN 38.15 0.697 6.53
DNAN@PDA 34.13 0.813 5.06
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Figure 9.	 Tensile  stress-strain  curves  of  DNAN (a) and DNAN@PDA (b) 

cylinder
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Figure 10.	 Compression stress-strain curves of DNAN (a) and DNAN@PDA 

(b) cylinder

Furthermore, the fracture surface of the cylinder after tensile test was 
observed by SEM, and the results was showed in Figure 11. Interestingly, 
the fracture surface of DNAN cylinder appeared stripe-type grooves, and the 
grooves had a relatively smooth surface, manifesting a brittle  fracture. For 
the DNAN@PDA cylinder,  the fracture surface was significantly rough. The 
interaction between DNAN crystal and PDA coating might enhance the toughness 
of the cylinder.    
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Figure 11.	 SEM images of the fracture surface of DNAN cylinder (a-c) and 
DNAN@PDA cylinder (d-f)
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4	 Conclusions

♦	 In summary, this work demonstrated a facile one-step method for modifying 
the energetic material DNAN by applying a thin PDA coating. Upon the 
addition of NaIO4 as oxidant, PDA coating layer was formed onto the surface 
of DNAN crystals within 5 min. 

♦	 The PDA coating on the surface of DNAN particles was thin and its mass 
proportion was slight, and the polymorph of DNAN crystals did not change 
during the coating process. 

♦	 The uniform PDA coating could improve the adhesive property between 
particles, which was reflected in the improvement of tensile property of 
DNAN@PDA cylinder. The fracture surface morphologies of the two 
samples also supported this view. 
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