PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Small Subsets in Euclidean Spaces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study a property of smallness of sets which is stronger than the possibility of packing the set into arbitrarily small balls (i.e., being Tarski null) but weaker than paradoxical decomposability (i.e., being a disjoint union of two sets equivalent by finite decomposition to the whole). We show, using the Axiom of Choice for uncountable families, that there are Tarski null sets which are not small sets. Using only the Principle of Dependent Choices, we show that bounded subsets of Rn that are included in countable unions of proper analytic subsets of Rn are small, and several related results.
Rocznik
Strony
109--118
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Department of Mathematics, University of Colorado, Boulder, CO 80309-0395, U.S.A.
autor
  • Centrum Edukacji G2, Moniuszki 9, 41-902 Bytom, Poland
Bibliografia
  • [1] S. Banach et A. Tarski, Sur la décomposition des ensembles de points en parties respectivement congruents, Fund. Math. 6 (1924), 244–277.
  • [2] M. R. Burke, Paradoxical decompositions of planar sets of positive outer measure, J. Geom. 79 (2004), 56–58.
  • [3] H. Hadwiger, Absolut messbare Punktmengen im euklidischen Raum, Comment. Math. Helv. 28 (1954), 119–148.
  • [4] J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139–147.
  • [5] J. Mycielski, The Banach–Tarski paradox for the hyperbolic plane, Fund. Math. 132 (1989), 143–149.
  • [6] J. Mycielski and G. Tomkowicz, The Banach–Tarski paradox for the hyperbolic plane (II), Fund. Math. 222 (2013), 289–290.
  • [7] J. Mycielski and G. Tomkowicz, Shadows of the Axiom Choice in L(R), in preparation.
  • [8] K. J. Nowak, A theorem on generic intersections in an o-minimal structure, Fund. Math. 227 (2014), 21–25.
  • [9] K. J. Nowak and G. Tomkowicz, Intersection of generic rotations in some classical spaces, Bull. Polish Acad. Sci. Math. 64 (2016), 105–107.
  • [10] W. Sierpiński, On the Congruence of Sets and Their Equivalence by Finite Decomposition, Lucknow Univ., 1954; reprinted by Chelsea, 1967.
  • [11] A. Tarski, Über das absolute Mass linearer Punktmengen, Fund. Math. 30 (1938), 218–234.
  • [12] A. Tarski, Algebraische Fassung des Massproblems, Fund. Math. 31 (1938), 47–66.
  • [13] G. Tomkowicz and S. Wagon, The Banach–Tarski Paradox, 2nd ed., Cambridge Univ. Press, 2016.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a74e209c-8c38-4d6b-8684-5ef4f552051f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.