PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bronchial Mucus as a Complex Fluid: Molecular Interactions and Influence of Nanostructured Particles on Rheological and Transport Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transport properties of bronchial mucus are investigated by two-stage experimental approach focused on: (a) rheological properties and (b) mass transfer rate through the stagnant layer of solutions of mucus components (mucine, DNA, proteins) and simulated multi-component mucus. Studies were done using thermostated horizontal diffusion cells with sodium cromoglycate and carminic acid as transferred solutes. Rheological properties of tested liquids was studied by a rotational viscometer and a cone-plate rheometer (dynamic method). First part of the studies demonstrated that inter-molecular interactions in these complex liquids influence both rheological and permeability characteristics. Transfer rate is governed not only by mucus composition and concentration but also by hydrophobic/hydrophilic properties of transported molecules. Second part was focused on the properties of such a layer in presence of selected nanostructured particles (different nanoclays and graphene oxide) which may be present in lungs after inhalation. It was shown that most of such particles increase visco-elasticity of the mucus and reduce the rate of mass transfer of model drugs. Measured effects may have adverse impact on health, since they will reduce mucociliary clearance in vivo and slow down drug penetration to the bronchial epithelium during inhalation therapy.
Rocznik
Strony
217--229
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Bansil R., Turner B. S., 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci., 11, 164–170. DOI: 10.1016/ j.cocis.2005.11.001.
  • 2. Bhat P. G., Flanagan D. R., Donovan M. D., 1995. The limiting role of mucus in drug absorption: drug permeation through mucus solution. Int. J. Pharm., 126, 179–187. DOI: 10.1016/0378-5173(95)04120-6.
  • 3. Brodin B., Steffansen B., Nielsen C. U., 2010. Molecular biopharmaceutics. Pharmaceutical Press, London.
  • 4. Cone R. A., 2009. Barrier properties of mucus. Adv. Drug Deliv. Rev., 61, 75–85. DOI: 10.1016/j.addr.2008.09.008.
  • 5. Desai M. A., Vadgama P., 1992. Estimation of effective diffusion coefficients of model solutes through gastric mucus: assessment of a diffusion chamber technique based on spectrophotometric analysis. Analyst, 116, 1113-1116. DOI: 10.1039/AN9911601113.
  • 6. King M., 2005. Physiologic basis of respiratory disease. BC Decker Inc., Hamilton, 409–416.
  • 7. Kondej D., Sosnowski T. R., 2013. Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles. Inhal. Toxicol., 25, 77–83. DOI: 10.3109/08958378.2012. 756087.
  • 8. Lai S. K., Wang Y., Wirtz D., Hanes J., 2009. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev., 61, 86–100. DOI:10.1016/j.addr.2008.09.012.
  • 9. Muhr A. H., Blanshard J. M. V., 1982. Diffusion in gels. Polymer, 23, 1012–1026. DOI: 10.1016/0032- 3861(82)90402-5.
  • 10. Marijnissen J., Gradoń L. (Eds.), 2010. Nanoparticles in medicine and environment. Inhalation and health effects. Springer, Dordrecht.
  • 11. Norris D. A., Sinko P. J., 1997. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl. Polym. Sci. 63, 1481–1492. DOI: 10.1002/(SICI)1097-4628(19970314)63.
  • 12. Oberdörster G., 1995. Lung particle overload: implications for occupational exposures to particles. Regul. Toxicol. Pharmacol., 21, 123-135. DOI: 10.1006/rtph.1995.1017.
  • 13. Odziomek M., Sosnowski T. R., Gradoń L., 2012. Conception, preparation and properties of functional carrier particles for pulmonary drug delivery. Int. J. Pharm., 433, 51–59. DOI: 10.1016/j.ijpharm.2012.04.067.
  • 14. Odziomek M., Sosnowski T. R., Gradoń L., 2015. The Influence of Functional Carrier Particles (FCPs) on the molecular transport rate through the reconstructed bronchial mucus: In vitro studies. Transp. Porous Media, 106, 439–454. DOI: 10.1007/s11242-014-0409-1.
  • 15. Rohs R., Jin X., West S. M., Joshi R., Honig B., Mann R. S., 2010. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem., 79, 233–269. DOI: 10.1146/annurev-biochem -060408-091030.
  • 16. Rubin B. K., 2009. Mucus, phlegm, and sputum in cystic fibrosis. Respir. Care. 54, 726-732.
  • 17. Sanders N. N., De Smedt S. C., Van Rompaey E., Simoens P., De Baets F., Demeester J., 2000. Cystic fibrosis sputum: a barrier to the transport of nanospheres. Am. J. Respir. Crit. Care Med., 162, 1905–11. DOI: 10.1164/ajrccm.162.5.9909009.
  • 18. Schramm G., 2000. A practical approach to rheology and rheometry. 2nd edition, Gebrueded HAAKE GmbH, Karlsruhe.
  • 19. Sosnowski T.R., 2015. Nanosized and nanostructured particles in pulmonary drug delivery. J. Nanosci. Nanotechnol. 15, 3476-3487. DOI: 10.1166/jnn.2015.9863.
  • 20. Sosnowski TR., Koliński M., Gradoń L., 2011. Interactions of benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system. Ann. Occup. Hyg., 55, 329–338. DOI: 10.1093/annhyg/mer007.
  • 21. Stobinski L., Lesiak B., Malolepszy A. Mazurkiewicz M., Mierzwa B., Zemek J., Jiricek P. Bieloshapka I., 2014. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc. Relat. Phenom., 195, 145–154. DOI: 10.1016/j.elspec.2014.07.003.
  • 22. Truskey G., Yuan F., Katz D., 2009. Transport phenomena in biological system. 2nd edition, Pearson Prenticee Hall.
  • 23. Widdicombe J. G., 1997. Airway liquid: A barrier to drug diffusion? Eur. Respir. J., 10, 2194–2197. DOI: 10.1183/09031936.97.10102194.
  • 24. Woodley J., 2001. Bioadhesion: New possibilities for drug administration? Clin. Pharmacokinet., 40, 77-84. DOI: 10.2165/00003088-200140020-00001.
  • 25. Yang W., Peters J. I., Williams R. O., 2008. Inhaled nanoparticles-a current review. Int. J. Pharm., 356, 239–47. DOI: 10.1016/j.ijpharm.2008.02.011.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a747027f-c413-40e2-804e-0a233584fc8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.