PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feasibility of municipal solid waste (MSW) as energy sources for Saudi Arabia’s future Reverse osmosis (RO) desalination plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Kingdom of Saudi Arabia (KSA) generates between 1.4–1.75 kg/person/day of Municipal Solid Waste (MSW) that accounts for over 16 million tons of MSW/year. The solid waste collected from different sources is dumped in landfills, thereby creating environmental concerns. In this paper, the potential of solid waste as an energy source (Waste to Energy (WTE)) for Reverse Osmosis (RO) water purification was evaluated. The KSA is known for its acute fresh water shortages and uses desalination technology in meeting its daily water requirements; a process that is energy intensive. The evaluation of the energy content of MSW shows a potential to produce about 927 MW in 2015, based on a total mass burn, and about 1,692 MW in 2032. The MSW-WTE plants can produce about 1.5% of the targeted 120 GW of energy for 2032. For the R.O system, it will give approximately 16.8% of the daily fresh water needed for total mass burn and 2.4% with the recycling option.
Rocznik
Strony
82--89
Opis fizyczny
Bibliogr. 32 poz.., rys., tab.
Twórcy
  • King Saud University, Mechanical Engineering Department, College of Applied Engineering, (Al Muzahimiyah Branch), Riyadh, Kingdom of Saudi Arabia
autor
  • King Saud University, Chemical Engineering Department, College of Engineering, Riyadh, Kingdom of Saudi Arabia
Bibliografia
  • 1. Central Department of Statistics and Information (CDSI). (n.d.). Retrieved May 05, 2015, from http://www.cdsi.gov.sa/english
  • 2. American Society of Mechanical Engineers. (2008). Waste-to-Energy: A Renewable Energy Source from Municipal Solid Waste. Solid Waste Processing Division and Energy Committee of ASME’s Technical Communities of Knowledge and Community. White Paper Submitted to Congress. New York, NY.
  • 3. Dajnak, D. & Lockwood, F.C. (2000). Use of thermal energy from waste for seawater desalination. Desalination 130(2), 137–146. DOI: 10.1016/S0011-9164(00)00081-3.
  • 4. The World Bank. (2016). World Development Indicators. Washington, D.C.: The World Bank. Retrieved May 02, 2015, from http://data.worldbank.org/data-catalog/world-development-indicators
  • 5. US Energy Information Administration. (n.d.). Retrieved May 19, 2015, from www.eia.gov
  • 6. KACARE. (2012). Renewable Energy-Waste to Energy, A pillar of the sustainable energy Kingdom. First International Environment Conference, 20–21 November, 2012. King Fahd Civic Centre, Yanbu Al Sinaiyah, Saudi Arabia.
  • 7. Al-Mutairi, S.O. (2009). Production of Compost from Municipal Solid Waste in Riyadh City. Unpublished master dissertation, King Saud University, Riyadh, Saudi Arabia.
  • 8. Ouda, O.K.M. & Cekirge, H.M. (2014). Potential environmental value of waste-to-energy facility in Riyadh city-Saudi Arabia. Arab. J. Sci. Eng. 39(11), 7525–7533. DOI: 10.1007/s13369-014-1311-4.
  • 9. Khan, M.S.M. & Kaneesamkandi, K. (2013). Biodegradable waste to biogas: Renewable energy option for the Kingdom of Saudi Arabia. IJIAS. 4, 101–113. ISSN: 2028–9324.
  • 10. El-Hussein, I., Fayad, W., El Sayed, T. & Zywietz, D. (2010). A New Source of Power: The Potential for Renewable Energy in the MENA Region. Retrieved May 14, 2015, from Strategy& http://www.strategyand.pwc.com/global/home/press
  • 11. Eurostat. (2012). Landfill still accounted for nearly 40% of municipal waste treated in the EU27 in 2010. Retrieved May 17, 2015, from http://ec.europa.eu/malta/news/28.03.12_land-fill_en.htm
  • 12. Wang, H. & Nie, Y. (2001). Municipal Solid Waste Characteristics and Management in China. J. Air. Waste. Manage. 51(2), 250–263. DOI: 10.1080/10473289.2001.10464266.
  • 13. Tang, J. (2012). A Cost-Benefit Analysis of Waste Incineration with Advanced Bottom Ash Separation Technology for a Chinese Municipality – Guanghan. Unpublished master dissertation, Vienna University of Technology.
  • 14. Chowdhury, S. & Al-Zahrani, M. (2013). Implications of climate change on water resources in Saudi Arabia. Arab. J. Sci. Eng. 38(8), 1959–1971. DOI: 10.1007/s13369-013-0565-6.
  • 15. Ministry of Environment, Water & Agriculture. (n.d.). Retrieved May 19, 2015, from http://www.mowe.gov.sa/
  • 16. Saline Water Conversion Corporation. (2015). Annual Report 2014. Riyadh: Kingdom of Saudi Arabia.
  • 17. Ouda, O.K.M. (2014). Water demand versus supply in Saudi Arabia: current and future.
  • 18. challenges. Inter. J. Water Res. Dev. 30(2), 335–344. DOI: 10.1080/07900627.2013.837363.
  • 19. Ministry of Economy and Planning. (2010). The Ninth Development Plan 2010–2014. Riyadh: Saudi Arabia.
  • 20. Gutub, S.A., Soliman, M.F. & Zaman, uz.A. (2013). Saudi Arabia Confronts with Water Scarcity: An Insight. Inter. J. Water. Res. Arid Environ. 2(4), 218–225. ISSN 2079-7079.
  • 21. World Bank. (2012). Renewable Energy Desalination: An Emerging Solution to Close the Water Gap in the Middle East and North Africa. Washington, DC World Bank. DOI: 10.1596/978-0-8213-9.
  • 22. KACARE. (2013). Towards Sustainable Energy and Mission Driven Research. Sustainable Energy Technologies Centre seminar. 19 April, 2013. King Saud University. Riyadh, Saudi Arabia.
  • 23. US Environmental Protection Agency. (n.d.). Advancing Sustainable Materials Management: Facts and Figures. Retrieved May 22, 2015, from http://www.epa.gov/osw/nonhaz/municipal/combustion.htm
  • 24. Tan, Y. (2013). Feasibility Study on Solid Waste to Energy Technological Aspects. Fung Technical Report No. 2013.04.15, College of Engineering, University of California, Berkeley, California.
  • 25. World Bank. (1999). Technical Guidance Report: Municipal Solid Waste Incineration. Retrieved May 22, 2015, from http://www.worldbank.org/urban/solid_wm/erm/CWG%20folder/Waste%20Incineration.pdf
  • 26. Tolba, M.K. & Saab, N.W. (eds.). (2008). Arab Environment: Future Challenges. Arab Forum for Environment and Development. Retrieved May 22, 2015, from http://www.afedonline.org/en/inner.aspx?contentID=329
  • 27. British Petroleum. (2014). BP Energy Outlook 2035: BP Statistical Review of World Energy. Retrieved May 20, 2015, from http://www.bp.com/statisticalreview
  • 28. Hoornweg, D. & Bhada-Tata, P. (2012). What a Waste: A Global Review of Solid Waste Management. Urban Development Series: Knowledge Papers, no. 15. Washington, DC: World Bank.
  • 29. Ouda, O.K.M., Cekirge, H.M. & Raza, S.A.R. (2013). An assessment of the potential contribution from waste-to – energy facilities to electricity demand in Saudi Arabia. Energ. Convers. Manage. 75, 402–406. DOI: 10.1016/j.enconman.2013.06.056.
  • 30. Ouda, O.K.M., Raza, S.A., Al-Waked, R., Al-Asad, J.S. & Nizami, A.S. (2015). Waste-to-energy potential in the Western Province of Saudi Arabia. J. King Saud. Eng. Sci. (In Press), DOI: 10.1016/j.jksues.2015.02.002.
  • 31. Mastro, Lo.F. & Mistretta, M. (2006). Thermoeconomic analysis of a coupled municipal solid waste thermovalorization–MSF desalination plant: an Italian case study. Desalination 196(1), 293–305. DOI: 10.1016/j.desal.2006.01.014.
  • 32. Ouda, O.K.M., Raza, S.A., Nizami, A.S., Rehan, M., Al-Waked, R. & Korres, N.E. (2016). Waste to energy potential: a case study of Saudi Arabia. Renew. Sust. Energ. Rev. 61, 328–340. DOI: 10.1016/j.rser.2016.04.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7442098-d685-4223-8519-63bb1da04a8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.