PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hot Dipping of Chromium Low-alloyed Steel in Al and Al-Si Eutectic Molten Baths

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chromium low alloyed steel substrate was subjected to aluminizing by hot dipping in pure aluminium and Al-Si eutectic alloy at 750°C and 650°C respectively, for dipping time up to 45 minutes. The coated samples were subjected for investigation using an optical microscope, scanning electron microscopy (SEM), Energy-dispersive X-ray analyzer (EDX) and X-ray diffraction (XRD) technique. Cyclic thermal oxidation test was carried out at 500°C for 72 hours to study the oxidation behaviour of hot-dipped aluminized steel. Electrochemical corrosion behavior was conducted in 3wt. %NaCl aqueous solution at room temperature. The cyclic thermal oxidation resistance was highly improved for both coating systems because of the formation of a thin protective oxide film in the outermost coating layer. The gain in weight was decreased by 24 times. The corrosion rate was decreased from 0.11 mmpy for uncoated specimen to be 2.9 x10-3 mmpy for Aluminum coated steel and 5.7x 10-3 mmpy for Al-Si eutectic coated specimens. The presence of silicon in hot dipping molten bath inhabit the growth of coating intermetallic layers, decrease the total coating thickness and change the interface boundaries from tongue like shape to be more regular with flatter interface. Two distinct coating layers were observed after hot dipping aluminizing in Al bath, while three distinct layers were observed after hot dipping in Al-Si molten bath.
Rocznik
Strony
37--50
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering Suez University, Egypt
  • Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering Suez University, Egypt
autor
  • Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering Suez University, Egypt
Bibliografia
  • [1] Kuruveri, U.B., Huilgol, P., Joseph, J. (2013). Aluminising of mild steel plates. ISRN Metallurgy. 1-6.
  • [2] Isiko, M.B. (2012). Aluminizing of plain carbon steel: Effect of temperature on coating and alloy phase morphology at constant holding time. Norway. Institute for material technology. 1-2.
  • [3] Davis, J.R. (1990). Surface engineering. vol. 5 of ASM Metals Handbook. Ohio, USA Materials Park.
  • [4] Ahmad, Z. (2006). Principles of corrosion engineering and corrosion control. London: UK. Elsevier. 17.
  • [5] Burakowski, T., Weirzchok, T. (2000). Surface engineering of Metals- Principles, Equipments, Technologies. CRC Press, London, UK.
  • [6] Pattankude1, B.G., Balwan,. A.R. (2019). A review on coating process. International Research Journal of Engineering and Technology (IRJET). 06(3), 7980.
  • [7] Huilgol, P., Bhat, S. & Bhat, K.U. (2013). Hot-dip aluminizing of low carbon steel using Al- 7Si-2Cu alloy baths. Journal of Coatings.2013, 1-6.
  • [8] Lin, M.-B. Wang, C.-J. & Volinsky, A.A. (2011). Isothermal and thermal cycling oxidation of hot- dip aluminide coating on flake/spheroidal graphite cast iron. Surface and Coatings Technology. 206, 1595-1599.
  • [9] Dngik Shin, Jeong-Yong Lee, Hoejun Heo, & Chung-Yun Kang. (2018). Formation procedure of reaction phases in Al hot dipping process of steel. Metals journal. 1.
  • [10] Yu Zhang, Yongzhe Fan, Xue Zhao, An DU, Ruina Ma, & Xiaoming Cao. (2019). Influence of graphite morphology on phase, microstructure and properities of hot dipping and diffusion aluminizing coating on flake/spheroidal graphite cast iron. Metals journal. 1.
  • [11] Voudouris, N. & Angelopoulos, G. (1997). Formation of aluminide coatings on nickel by a fluidized bed CVD process. Surface Modification Technologies XI. 558-567.
  • [12] Wang, D. & Shi, Z. (2004). Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel. Applied surface science. Volume (227). 255-260.
  • [13] Murakami, K., Nishida, N., Osamura, K. & Tomota, Y. (2004). Aluminization of high purity iron by powder liquid coating. Acta Materialia. 52(5), 1271-1281.
  • [14] Cheng, W.-J. & Wang, C.-J. (2013). High-temperature oxidation behavior of hot-dipped aluminide mild steel with various silicon contents. Applied surface science. 274. 258-265.
  • [15] Mishra, B., Ionescu, M. & Chandra, T. (2013). The effect of Si on the intermetallic formation during hot dip aluminizing. Advanced Materials Research. Volume 922, 429-434.
  • [16] Kee-Hyun, et. Al. (2006). Observations of intermetallic compound formation of hot dip aluminized steel. Materials Science Forum. 519-521, 1871-1875.
  • [17] Fry, A., Osgerby, S., Wright, M. (2002). Oxidation of alloys in steam environments. United kingdom: NPL Materials Centre. 6.
  • [18] Scott, D.A. (1992). Metallography and microstructure in ancient and historic metals. London. Getty publications. 57-63.
  • [19] Lawrence J. Korb, Rockwell, David L. Olson. (1992). ASM Handbook Vol. 13: Corrosion: Fundametals, Testing and Protection. Florida, USA: ASM International Handbook Committee.
  • [20] Nicholls, J. E. (1964). Corr. Technol. 11.16.
  • [21] Azimaee, H. et. al. (2019). Effect of silicon and manganese on the kinetics and morphology of the intermetallic layer growth during hot-dip aluminizing. Surface and Coatings Technology. 357. 483-496.
  • [22] Sun Kyu Kim, (2013). Hot-dip aluminizing with silicon and magnesium addition I. Effect on intermertallic layer thickness. Journal of the Korean Institute of Metals and Materials. 51(11), 795-799.
  • [23] Springer, H., Kostka, A., Payton, Raabe, D., Kaysser, A. & Eggeler, G. (2011). On the formation and growth of intermetallic phases during interdiffusion growth between low-carbon steel and aluminum alloys. Acta Materialia. 59, 1586-1600.
  • [24] Kab, M., Mendil, S. & Taibi, K. (2020). Evolution of the microstructure of intermetallic compounds formed on mild steel during hot dipping in molten Al alloy bath. Metallography, Microstructure and Analysis. Journal 4.
  • [25] Bahadur A. & Mohanty, O.N. (1991). Materials Transaction. JIM. 32(11), 1053-1061.
  • [26] Bouche, K., Barbier, F. & Coulet, A. (1998). Intermetallic compound layer growth between solid iron and molten aluminium. Materials Science and Engineering A. 249(1-2), 167-175.
  • [27] Maitra, T. & Gupta, S.P. (2002). Intermetallic compound formation in Fe–Al–Si ternary system: Part II. Materials Characterization. 49(4), 293-311.
  • [28] Nychka, J.A. & Clarke, D.R. (2005). Quantification of aluminum outward diffusion during oxidation of FeCrAl alloys. Oxidation of Metals. 63(Nos.5/6), 325-351.
  • [29] Lars, P.H. et. All. (2002). Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics. 92(3), 1649-1656.
  • [30] Murray, J.L. (1992). Fe–Al binary phase diagram, in: H. Baker (Ed.), Alloy Phase Diagrams. ASM International. OH- USA. Materials Park. 54.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a74356c3-de28-47b3-87b7-2187e6942563
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.