PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ nanokrzemionki na mrozoodporność zapraw z cementu z dodatkiem popiołu lotnego, dojrzewających w warunkach korozyjnych, w różnych temperaturach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Effect of nano silica on freeze-thaw resistance of cement-fly ash mortars, cured in corrosive condition at different temperature
Języki publikacji
PL EN
Abstrakty
PL
W Chinach buduje się dużą ilość wież betonowych na liniach do przesyłu bardzo wysokich napięć, z których wiele przecina zamarzające płaskowyże, a betonowy fundament wieży energetycznej narażony jest na zamarzanie i rozmrażanie, co zmniejsza jego wytrzymałość. W pracy badano zaprawy wykonane z cementu, popiołu lotnego i nanokrzemionki, które dojrzewały w roztworze siarczanów i chlorków przez 90 dni. Badano wytrzymałość, odporność na mróz, strukturę porów, strefę przejściową oraz wpływ dodatku nanokrzemionki na te właściwości. Wyniki badań pokazały, że dodatek nanokrzemionki poprawia odporność na mróz, a ten efekt można wyjaśnić poprawą struktury porów i zmniejszeniem porowatości strefy przejściowej z kruszywem. Przechowywanie betonu w roztworze agresywnym siarczanowo-chlorkowym ma niekorzystny wpływ na odporność na mróz, a powstawanie Aft, powodujące ekspansje może powodować powstawanie spękań betonu. Te wyniki uzasadniają ograniczenie wykonywania fundamentów betonowych wież do okresu letniego na zamarzających płaskowyżach, co zapewni ich lepsze właściwości.
EN
In China, a large amount of electric transmission towers has been built across plateau frozen soil, where the foundation concrete serves under freeze-thaw and erosion condition, and consequently, the durability faces the tough challenges. In this study, the mortars were prepared based on cement, fly ash, and nano silica [NS], which were cured in chloride-sulfate solution for 90 days. The compressive strength, freeze-thaw resistance, pore structure, interfacial transition zone, and hydration products was investigated, and the improvement in freeze-thaw resistance by addition of NS was discussed. The results show that addition of NS can improve the freeze-thaw resistance, and increase in curing temperature can also show improvement in freeze-thaw resistance. This effect can be explained by refine the pore structure and densify the microstructure of ITZ with the addition of NS. Furthermore, negative effect on freeze-thaw resistance can be found that being cured under chloride-sulfate condition, the formation of AFt would cause the volume expansion and cracking of concrete. Such results suggest that in the plateau frozen soil, it is better to cast concrete in summer, which would benefit the strength development of concrete and promote the freeze-thaw resistance.
Czasopismo
Rocznik
Strony
137--153
Opis fizyczny
Bibliogr. 46 poz., il., tab.
Twórcy
autor
  • China Electric Power Research Institute, Beijing, China
autor
  • China Electric Power Research Institute, Beijing, China
autor
  • China Electric Power Research Institute, Beijing, China
autor
  • China Electric Power Research Institute, Beijing, China
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
Bibliografia
  • 1 D. Wang, X. Zhou, Y. Meng, Z. Chen, Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack, Constr Build Mater, 147, 398-406 (2017).
  • 2 M. G. Rosa, B. Cetin, T. B. Edil, C. H. Benson, Freeze-Thaw Performance of Fly Ash-Stabilized Materials and Recycled Pavement Materials, J. Mater. Civil. Eng. 29, 04017015 (2017).
  • 3 S. W. Tang, Y. Yao, C. Andrade, Z. J. Li, Recent durability studies on concrete structure, Cem. Concr. Res. 78, 143-154 (2015).
  • 4 Y. Li, R. Wang, S. Li, Y. Zhao, Y. Qin, Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze–thaw cycles and sulfate attack, Constr. Build. Mater. 166, 23-34 (2018).
  • 5 W.-y. Ouyang, J.-k. Chen, M.-q. Jiang, Evolution of surface hardness of concrete under sulfate attack, Constr. Build. Mater. 53, 419-424 (2014).
  • 6 B. Da, H. Yu, H. Ma, Y. Tan, R. Mi, X. Dou, Chloride diffusion study of coral concrete in a marine environment, Constr. Build. Mater. 123, 47-58 (2016).
  • 7 R. Yin, B. Li, C. Zhang, Q. Wu, H. Xie, Y. Wang, The permeability of SO4(2-) and Cl- in concrete under the effect of seepage flow and stress fields, Constr. Build. Mater. 162, 697-703 (2018).
  • 8 Y. Wang, M.-z. An, Z.-r. Yu, S. Han, W.-y. Ji, Durability of reactive powder concrete under chloride-salt freeze-thaw cycling, Mater. Struct. 50, 18 (2017).
  • 9 H. Tan, X. Li, C. He, B. Ma, Y. Bai, Z. Luo, Utilization of Lithium Slag as An Admixture in Blended Cements: Physico-mechanical and Hydration Characteristics, J. Wuhan. Univ. Technol. 30, 129-133 (2015).
  • 10 M. C. G. Juenger, R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete, Cem. Concr. Res. 78, 71-80 (2015).
  • 11 T. Hemalatha, A. Ramaswamy, A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete, J. Clean. Prod. 147, 546-559 (2017).
  • 12 C.-W. Chung, C.-S. Shon, Y.-S. Kim, Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze–thaw cycles, Constr Build Mater, 24, 1739-1745 (2010).
  • 13 V. Marcos-Meson, A. Michel, A. Solgaard, G. Fischer, C. Edvardsen, T. L. Skovhus, Corrosion resistance of steel fibre reinforced concrete - A literature review, Cem. Concr. Res. 103, 1-20 (2018).
  • 14 M. H. Zhang, J. Islam, Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag, Constr. Build. Mater. 29, 573-580 (2012).
  • 15 M. H. Zhang, J. Islam, S. Peethamparan, Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag, Cem. Concr. Comp. 34, 650-662 (2012).
  • 16 P. K. Hou, K. J. Wang, J. S. Qian, S. Kawashima, D. Y. Kong, S. P. Shah, Effects of colloidal nanoSiO2 on fly ash hydration, Cem. Concr. Comp, 34, 1095-1103 (2012).
  • 17 R. C. E. Modolo, L. Senff, V. M. Ferreira, L. A. C. Tarelho, C. A. M. Moraes, Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability, J. Mater. Cycles. Waste 20, 1006-1015 (2018).
  • 18 R. Roychand, S. De Silva, S. Setunge, Nanosilica Modified High-Volume Fly Ash and Slag Cement Composite: Environmentally Friendly Alternative to OPC, J. Mater. Civil. Eng. 30, 04018043 (2018).
  • 19 A. Sadrmomtazi, B. Tahmouresi, R. K. Khoshkbijari, Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete, Mag. Concr. Res. 70, 519-532 (2018).
  • 20 K. Turk, M. L. Nehdi, Coupled effects of limestone powder and high-volume fly ash on mechanical properties of ECC, Constr. Build. Mater. 164, 185-192 (2018).
  • 21 F. U. A. Shaikh, S. W. M. Supit, Chloride induced corrosion durability of high volume fly ash concretes containing nano particles, Constr. Build. Mater. 99, 208-225 (2015).
  • 22 J. Mei, B. Ma, H. Tan, H. Li, X. Liu, W. Jiang, T. Zhang, Y. Guo, Influence of steam curing and nano silica on hydration and microstructure characteristics of high volume fly ash cement system, Constr. Build. Mater. 171, 83-95 (2018).
  • 23 J. Mei, H. Tan, H. Li, B. Ma, X. Liu, W. Jiang, T. Zhang, X. Li, Effect of sodium sulfate and nano-SiO2 on hydration and microstructure of cementitious materials containing high volume fly ash under steam curing, Constr. Build. Mater. 163, 812-825 (2018).
  • 24 G. Y. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cem. Concr. Res. 34, 1043-1049 (2004).
  • 25 M. Jalal, Transport properties of high-performance cementitious composites incorporating micro and nano SiO2 into the binder, Sci. Eng. Compos. Mater. 19, 415-421 (2012).
  • 26 B. Zhang, H. Tan, W. Shen, G. Xu, B. Ma, X. Ji, Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability, Cem. Concr. Compos. 92, 7-17 (2018).
  • 27 P. K. Hou, S. Kawashima, K. J. Wang, D. J. Corr, J. S. Qian, S. P. Shah, Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar, Cem. Concr. Comp. 35, 12-22 (2013).
  • 28 B. W. Jo, C. H. Kim, J. H. Lim, Characteristics of cement mortar with nano-SiO2 particles, ACI Mater. J., 104, 404-407 (2007).
  • 29 B. W. Jo, C. H. Kim, G. H. Tae, J. B. Park, Characteristics of cement mortar with nano-SiO2 particles, Constr. Build. Mater. 21, 1351-1355 (2007).
  • 30 H. Tan, F. Zou, B. Ma, Y. Guo, X. Li, J. Mei, Effect of competitive adsorption between sodium gluconate and polycarboxylate superplasticizer on rheology of cement paste, Constr. Build. Mater. 144, 338-346 (2017).
  • 31 F. Zou, H. Tan, Y. Guo, B. Ma, X. He, Y. Zhou, Effect of sodium gluconate on dispersion of polycarboxylate superplasticizer with different grafting density in side chain, J. Ind. Eng. Chem. 55, 91-100 (2017).
  • 32 J. K. Tishmack, J. Olek, S. Diamond, Characterization of High-Calcium Fly Ashes and Their Potential Influence on Ettringite Formation in Cementitious Systems, Cem. Concr. Aggr. 21, 82-92 (1999).
  • 33 J. K. Tishmack, Characterization of high-calcium fly ash and its influence on ettringite formation in portland cement pastes, Bioch. Biophys. Acta 795, 417-426 (1999).
  • 34 B. Ma, X. Liu, H. Tan, T. Zhang, J. Mei, H. Qi, W. Jiang, F. Zou, Utilization of pretreated fly ash to enhance the chloride binding capacity of cement-based material, Constr. Build. Mater. 175, 726-734 (2018).
  • 35 B. Ma, T. Zhang, H. Tan, X. Liu, J. Mei, H. Qi, W. Jiang, F. Zou, Effect of triisopropanolamine on compressive strength and hydration of cement-fly ash paste, Constr. Build. Mater. 179, 89-99 (2018).
  • 36 B. Zhang, H. Tan, B. Ma, F. Chen, Z. Lv, X. Li, Preparation and application of fine-grinded cement in cement-based material, Constr. Build. Mater. 157, 34-41 (2017).
  • 37 H. Tan, X. Zhang, X. He, Y. Guo, X. Deng, Y. Su, J. Yang, Y. Wang, Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste, J. Clean. Prod. 205, 536-551 (2018).
  • 38 J. Yang, Y. Su, X. He, H. Tan, Y. Jiang, L. Zeng, B. Strnadel, Pore structure evaluation of cementing composites blended with coal by-products: Calcined coal gangue and coal fly ash, Fuel Process. Technol. 181, 75-90 (2018).
  • 39 Z. He, C. Qian, S. Du, M. Huang, M. Xia, Nanoindentation Characteristics of Cement Paste and Interfacial Transition Zone in Mortar with Rice Husk Ash, J. Wuhan Univ. Technol. 32, 417-421 (2017).
  • 40 J. A. Rossignolo, M. S. Rodrigues, M. Frias, S. F. Santos, H. Savastano Junior, Improved interfacial transition zone between aggregate-cementitious matrix by addition sugarcane industrial ash, Cem. Concr. Comp., 80, 157-167 (2017).
  • 41 J. P. Ollivier, J. C. Maso, B. Bourdette, Interfacial transition zone in concrete, Adv. Cem. Based Mater. 2, 30-38 (1995).
  • 42 J. Xu, B. Wang, J. Zuo, Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach, Cem. Concr. Comp. 81, 1-10 (2017).
  • 43 M. Nili, A. Ehsani, Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume, Mater. Design 75, 174-183 (2015).
  • 44 M. Liu, H. Tan, X. He, Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system, Constr. Build. Mater. 194, 350-359 (2019).
  • 45 H. Tan, X. Deng, X. He, J. Zhang, X. Zhang, Y. Su, J. Yang, Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate, Cem. Concr. Comp. 97, 387-398 (2019).
  • 46 H. Tan, M. Li, J. Ren, X. Deng, X. Zhang, K. Nie, J. Zhang, Z. Yu, Effect of aluminum sulfate on the hydration of tricalcium silicate, Constr. Build. Mater. 205, 414-424 (2019).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a740e8e6-c212-478b-b2f3-0bd382b1a1a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.