PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and properties of Cu–Nb and Cu–Ag nanofiber composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a growing demand for new high strength and high electrical conductivity materials for the advanced electric applications. The promising materials for generators used to produce strong and variable magnetic fields are Cu–Ag and Cu–Nb wires. Two classical copper alloys were selected for this investigation. The third material used in the studies was produced by bundle drawing of niobium wire in a copper tube. Microstructure, mechanical and electrical properties were examined in relation to processing technology. Microstructure of Cu–Ag wires consisted of silver-rich bands distributed in a copper-rich matrix, whereas that of the Cu–Nb alloy wire was not homogeneous. Despite significant plastic deformation, globular particles of niobium, which do not contribute to the increase of mechanical properties, were also observed in addition to narrow bands of niobium-rich phase. Multiple drawing of Nb wire bundle in a copper jacket is a promising method for the production of Cu–Nb microcomposites. The number of wires increases in geometric progression during subsequent bundling, which results in the reduction of Nb band cross-section. Under this work, a wire having more than 820,000 niobium filaments of a diameter between 100 and 200 nm evenly distributed in a pure copper matrix was produced.
Rocznik
Strony
689--697
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • The Non Ferrous Metals Institute, 44-100 Gliwice, Poland
  • The Non Ferrous Metals Institute, 44-100 Gliwice, Poland
autor
  • The Non Ferrous Metals Institute, 44-100 Gliwice, Poland
  • Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznan, Poland
  • Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznan, Poland
Bibliografia
  • [1] F. Heringhaus, D. Raabe, G. Gotistein, On the correlation of microstructure and electromagnetic properties of heavily cold worked Cu–20 wt% Nb wires, Acta Metallurgica et Materialia 43 (4) (1995) 1467–1476.
  • [2] D. Raabe, Simulation of the resistivity of heavily cold worked Cu–20 wt.% Nb wires, Computational Materials Science 3 (1995) 402–412.
  • [3] F. Dupouy, E. Snoeck, M.J. Casanove, C. Roucau, J.P. Peyrede, S. Askenazy, Microstructural characterization of high strength and high conductivity nanocomposite wires, Scripta Materialia 34 (7) (1996) 1067–1073.
  • [4] Y. Sakai, H.J. Schneider-Muntau, Ultra-high strength, high conductivity Cu–Ag alloy wires, Acta Materialia 45 (3) (1997) 1017–1023.
  • [5] W. Grunberger, M. Heilmaier, L. Schultz, Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at Dresden, Physica B 294/295 (2001) 643–647.
  • [6] V. Pantsyrnyi, A. Shikov, A. Vorobieva, N. Khlebova, I. Potapenko, A. Silaev, N. Bielikov, G. Vedernikov, N. Kozlenkova, V. Drobishev, High strength, high conductivity macro- and microcomposite winding wires for pulsed magnets, Physica B 294/295 (2001) 669–673.
  • [7] Y.Z. Tian, W.Z. Han, H.J. Yang, S.X. Li, S.D. Wu, Z.F. Zhang, Shear banding observations in Cu–16 wt.% Ag alloy subjected to one-pass equal channel angular pressing, Scripta Materialia 62 (2010) 183–186.
  • [8] J.Y. Zhang, P. Zhang, X. Zhang, R.H. Wang, G. Liu, G.J. Zhang, J. Sun, Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers, Materials Science and Engineering A 545 (2012) 118–122.
  • [9] X. Liu, N.T. Nuhfer, A.D. Rollett, S. Sinha, S.-B. Lee, J.S. Carpenter, J.E. LeDonne, A. Darbal, K. Barmak, Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission-electron-microscope- based orientation and phase mapping, Acta Materialia 64 (2014) 333–344.
  • [10] M. Wang, R.S. Averback, P. Bellon, S. Dillon, Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation, Acta Materialia 62 (2014) 276–285.
  • [11] N. Jia, F. Roters, P. Eisenlohr, D. Raabe, X. Zhao, Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu–Ag and Cu–Nb metal matrix composites, Acta Materialia 61 (2013) 4591–4606.
  • [12] W. Gluchowski, Z. Rdzawski, J. Stobrawa, Microstructural characterization of high strength high conductivity Cu–Nb microcomposite wires, Journal of Achievements in Materials and Manufacturing Engineering 46 (1) (2011) 40–49.
  • [13] A. Korbel, W. Bochniak, Refinement and control of the metal structure elements by plastic deformation, Scripta Materialia 51 (2004) 755–759.
  • [14] A. Korbel, W. Bochniak, P. Ostachowski, L. Blaz, Visco-plastic flow of metal in dynamic conditions of complex strain scheme, Metallurgical and Materials Transactions A 42 (9) (2011) 2881–2897.
  • [15] A. Barone, G. Paterno, Physics and Applications of the Josephson Effect, Wiley-VCH, 1982 ISBN-10: 0471014699.
  • [16] J. Piekoszewski, W. Kempiński, B. Andrzejewski, Z. Trybuła, L. Piekara-Sady, J. Kaszyński, J. Stankowski, Z. Werner, E. Richter, F. Prokert, J. Stanisławski, M. Barlak, Superconductivity of MgB2 thin films prepared by ion implantation and pulsed plasma treatment, Vacuum 78 (2005) 123–129.
  • [17] B. Andrzejewski, E. Guilmeau, C. Simon, Modelling of the magnetic behaviour of random granular superconductors by single junction model, Superconductor Science and Technology 14 (2001) 904–909.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a73b8aa6-60e5-4fa4-a714-d4f34073051a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.