PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of Gaseous Compounds with Different Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sensing technology has been developed for detection of gases in some environmental, industrial, medical, and scientific applications. The main tasks of these works is to enhance performance of gas sensors taking into account their different applicability and scenarios of operation. This paper presents the descriptions, comparison and recent progress in some existing gas sensing technologies. Detailed introduction to optical sensing methods is presented. In a general way, other kinds of various sensors, such as catalytic, thermal conductivity, electrochemical, semiconductor and surface acoustic wave ones, are also presented. Furthermore, this paper focuses on performance of the optical method in detecting biomarkers in the exhaled air. There are discussed some examination results of the constructed devices. The devices operated on the basis of enhanced cavity and wavelength modulation spectroscopies. The experimental data used for analyzing applicability of these different sensing technologies in medical screening. Several suggestions related to future development are also discussed.
Rocznik
Strony
205--224
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr.
Twórcy
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warsaw, Poland
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warsaw, Poland
Bibliografia
  • [1] Bielecki, Z., Janucki, J. (2012). Sensors and Systems for the Detection of Explosive Devices − An Overview. Metrol. Meas. Syst., 19(1), 3-28.
  • [2] Hodgkinson, J., Tatam, R.P. (2013). Optical gas sensing: a review. Metrol. Meas. Syst., 24(1), 1−59.
  • [3] Dakin, J.P, Chambers, P. (2006). Review of methods of optical gas detection by direct optical spectroscopy, with emphasis on correlation spectroscopy. Optical Chemical Sensors, NATO Science Series II: Mathematics, Physics and Chemistry, 24, 457−477.
  • [4] Bielecki, Z., Stacewicz, T. et al. (2015). Application of quantum cascade lasers to trace gas detection. Bull. Pol. Acad. Sci., Tech. Sci., 63(2), 515−525.
  • [5] Buszewski, B., Grzywinski, D., et al. (2013). Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques. Bioanalysis, 5(18), 2287-306.
  • [6] Li, T., Xu, L., et al. (2012). A high heating efficiency two beam microplate for catalytic gas sensors. Proc. of the IEEE International Conference on Micro Electronic and Mechanical Systems MEMS, Kyoto, Japan, 65-68.
  • [7] https://en.wikipedia.org/wiki/Pellistor
  • [8] Park, S.Ch., Yoon, S.I., Lee, Ch.I., et al. (2009). A micro-thermoelectric gas sensor for detection of hydrogen and atomic oxygen. Analyst., 134, 236−242.
  • [9] Hierlemann, A., Baltes, H. (2003). CMOS-based chemical microsensor. Analyst., 128, 15−28.
  • [10] Yunusa, Z., Hamidon, M.N., et al. (2014). Gas sensors: a review. Sensors & Transducers, 168(4), 61−75.
  • [11] http://www.versaperm.com/thermal_conductivity_sensor.php
  • [12] Ohira, S., Toda, K. (2008). Micro gas analyzers for environmental and medical applications. Anal. Chim. Acta, 619, 143-156.
  • [13] de Graaf, G., Wolffenbuttel, R. (2012). Surface micromachined thermal conductivity detectors for gas sensing. Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, 13−16 May, 1861-1864.
  • [14] https://en.wikipedia.org/wiki/Electrochemical_gas_sensor
  • [15] Xiong, L., Compton, R.G. (2014). Amperometric Gas detection: A Review. Int. J. Electrochem. Sci., 9, 7152-7181.
  • [16] Jasinski, P., Suzuki, T., Anderson, H.U. (2003). Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B Chem., 95(1), 73−77.
  • [17] Gwiżdż, P., Brudnik, A., Zakrzewska, K. (2015). Hydrogen detection with a gas sensor array - processing and recognition of dynamic responses using neural networks. Metrol. Meas. Syst., 22(1), 3−12.
  • [18] Korotcenkov, G. (2013). Handbook of gas sensor materials. Springer: New York, 49−116.
  • [19] Zakrzewska, K. (2001). Mixed oxides as gas sensors. Thin solid films, 391(2), 229−238.
  • [20] Smulko, J., Trawka, M. (2015). Gas selectivity enhancement by sampling-and-hold method in resistive gas sensors. Sens. Actuators. B Chem., 219, 17−21.
  • [21] Nakhleh, M.K., Broza, Y.Y., Haick, H. (2014). Monolayer-capped gold nanoparticles for disease detection from breath. Nanomedicine, 9(13), 1991−2002.
  • [22] Ederth, J., Smulko, J., et al. (2006). Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films. Sens. Actuators. B Chem., 113(1), 310−315.
  • [23] Heszler, P., Ionescu, R., et al. (2007). On the selectivity of nanostructured semiconductor gas sensors. Phys Status Solidi, 244(11), 4331−4335.
  • [24] Halek, G., Malewicz, M., Teterycz, H. (2009). Methods of selectivity improvements of semiconductor gas sensors. Proc. of the International Students and Young Scientists Workshop on Photonics and Microsystem’, Wernigerode, 31-35.
  • [25] Lentka, Ł., Smulko, J.M., Ionescu, R., Granqvist, C.G., Kish, L.B. (2015). Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst., 22(3), 341−350.
  • [26] Comini, E., Cristalli, A., Faglia, G., Sberveglieri, G. (2000). Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sens Actuators B Chem., 65(1), 260−263.
  • [27] Kish, L.B., Vajtai, R., Granqvist, C.G. (2000). Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues. Sens. Actuators. B Chem., 71(1), 55-59.
  • [28] Dziedzic, A., Kolek, A., Licznerski, B.W. (1999). Noise and nonlinearity of gas sensors - preliminary results. Proc. 22nd Int. Spring Seminar on Electronics Technology, Dresden-Freital, 99−104.
  • [29] Vidybida, A.K. (2003). Adsorption - desorption noise can be used for improving selectivity. Sens. Actuators. A Phys., 107(3), 233−237.
  • [30] Kotarski, M.M., Smulko, J. (2010). Hazardous gases detection by fluctuation-enhanced gas sensing. FNL, 9(04), 359−371.
  • [31] Kotarski, M., Smulko, J. (2009). Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst., 16(3), 457−464.
  • [32] Osowski, S., Siwek, K., et al. (2014). Differential electronic nose in on-line dynamic measurements. Metrol. Meas. Syst., 21(4), 649-662.
  • [33] Matatagui, D., Fernandez M.J., Forntecha, J. (2012). Love-wave sensor array to detect, discriminate and classify chemical warfare agent simulants. Sens. Actuators. B Chem., 175, 173-178.
  • [34] Hao, H.C., Chiang, M.C., et al. (2013). Improved surface acoustic wave sensor for low concentration ammonia/methane mixture gases detection. 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, Germany.
  • [35] HITRAN Database
  • [36] Hodgkinson, J., Smith, R., et al. (2013). Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor. Sens. Actuators. B Chem., 186, 580-588.
  • [37] http://www.azosensors.com/Article.aspx?ArticleID=544
  • [38] Namjou, K., Cai, S., et al. (1998). Sensitive absorption spectroscopy with a room-temperature distributedfeedback quantum-cascade laser. Optics Letters, 23(3), 219−221.
  • [39] Szabra, D., Bielecki, Z., et al. (2012). Interpulse and intrapulse spectroscopy with tunable quantum cascade lasers. Conference IOS 2012, Szczyrk-Beskidy Mountains, 34.
  • [40] Mikołajczyk, J., Szabra, D., et al. (2014). Control systems of quantum cascade lasers. Conference KKE 2014, Darłowko, 456.
  • [41] Szabra, D., Mikołajczyk, J., et al. (2013). Control system for some quantum cascade laser applications. Conference KKE 2013, Darłowko, 327−332.
  • [42] Szabra, D., Mikołajczyk, J., et al. (2014). Power supply systems for quantum cascade lasers. Electronics: structures, technologies, applications, 11, 50−53.
  • [43] Szabra, D., Nowakowski, M., et al. (2013). Quantum cascade laser driving in optical spectroscopy. Electrotechnical Review, 89(9), 173−177.
  • [44] Menzel, L. Kostrev, A.A., et al. (2001). Spectroscopic detection of biological NO with a quantum cascade laser. Appl. Phys. B., 72(7), 859−863.
  • [45] Yoshii, Y., Kuze, H., Takeuchi, N. (2003). Long-Path Measurement of Atmospheric NO2 with an Obstruction Flashlight and a Charge Coupled Device Spectrometer. Applied Optics, 42, 4362−4368.
  • [46] Richter, A. (2006). Differential optical absorption spectroscopy as a tool to measure pollution from space. Spectroscopy Europe, 18(6), 14−21.
  • [47] https://clu-in.org/programs/21m2/openpath/uv-doas/
  • [48] Committee on Monitoring at Chemical Agent Disposal Facilities, Board on Army Science and Technology, Division on Engineering and Physical Sciences, National Research Council. Monitoring at Chemical Agent Disposal Facilities. Washington, USA (2005).
  • [49] http://opsis.se/Products/MonitoringMethods/UVDOASTechnique/tabid/1097/Default.aspx#sthash.56aE9t3d.dpuf
  • [50] Weitkamp, C. (2004). Lidar − range resolved optical remote sensing of the atmosphere. Springer.
  • [51] Chudzyński, S., Ernst, K., et al. (1996). Lidar monitoring of the atmosphere. Proc. SPIE, 3188, 168-179.
  • [52] Zwoździak, J., et al. (2001). Some results on the ozone vertical distribution in atmospheric boundary layer from LIDAR and surface measurements over the Kamienczyk Valley. Atmos. Research, 58, 55−70.
  • [53] Markowicz, K.M., Zielinski, T., et al. (2012). Remote sensing measurements of the volcanic ash plume over Poland in April 2010. Atmospheric Environment, 48, 66−75.
  • [54] Stelmaszczyk, K., Czyżewski, A., et al. (2000). New Method of Elaboration of the Lidar Signal. Appl. Phys. B, 70, 295-301.
  • [55] Robinson, R., Gardiner, T., et al. (2011). Infrared differential absorption Lidar (DIAL) measurements of hydrocarbon emissions. J. Environ. Monit., 13, 2213−2220.
  • [56] Chudzyński, S., Czyżewski, A., et al. (2001). Observation of Ozone Concentration during the Solar Eclipse. Atmos. Research, 57(1), 43−49.
  • [57] Stacewicz, T., Chudzyński, S., et al. (2003). Studies of physical processes in the Earth’s atmosphere. Radiat. Phys. Chem., 68(1,2), 57−63.
  • [58] Gietka, A., Mierczyk, Z., Muzal, M. (2006). Optoelectronic system for remote detection of contaminations and atmosphere pollution. Bulletin of the Military University of Technology, LV(2), 21−36.
  • [59] Wojtas, J., Tittel, F.K., et al. (2014). Cavity enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis. Int. J. Thermophys, DOI: 10.1007/s10765-014-1586-4.
  • [60] Kosterev, A.A., Bakhirkin, Y.A., et al. (2002). Quartz-enhanced photoacoustic spectroscopy. Opt. Lett., 27, 1902−1904.
  • [61] Tittel, F.K., Dong, L., et al. (2012). Sensitive detection of nitric oxide using a 5.26 μm external cavity quantum cascade laser based QEPAS sensor. Proc. SPIE 8268, DOI: 10.1117/12.905621.
  • [62] O’Keefe, A., Deacon, D.A.G. (1988). Cavity ring-down optical spectrometer for absorption measurements using pulsed laser source. Rev. Sci. Instrum., 59, 2544−2551.
  • [63] O’Neill, H., Gordon, S.M., et al. (1988). A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clin. Chem., 34, 1613−1618.
  • [64] Berden, G., Peeters, R., Meijer, G. (2000). Cavity ring-down spectroscopy. Experimental schemes and applications. Int. Rev. Phys. Chem., 19(4), 565−607.
  • [65] Cygan, A., Lisak, D., et al. (2011). Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer. Rev. Sci. Instrum., 82, 063107-1− 063107-12.
  • [66] Cygan, A., Wojtewicz, S., et al. (2013). Spectral line-shapes investigation with Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy. Eur. Phys. J. Spec. Top., 222, 2119−2142.
  • [67] Engel, R., Berden, G., et al. (1998). Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy. Rev. Sci. Instrum., 69, 3763−3769.
  • [68] Wojtas, J., Czyzewski, A., et al. (2006). Sensitive detection of NO2 with Cavity Enhanced Spectroscopy. Optica Applicata, 36(4), 461−467.
  • [69] Wojtas, J., Mikołajczyk, J., et al. (2011). Applying CEAS method to UV, VIS, and IR spectroscopy sensors. Bull. Pol. Acad. Sci., Tech. Sci., 59(4), 1−10.
  • [70] Stacewicz, T., Wojtas, J., et al. (2012). Cavity Ring Down Spectroscopy: detection of trace amounts of matter. Opto-Electron. Rev., 20(1), 34−41.
  • [71] Wojtas, J., Bielecki, Z., et al. (2012). Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron. Rev., 20(1), 77−90.
  • [72] Birrell, M.A., McCluskie, K., et al. (2006). Utility of exhaled nitric oxide as a noninvasive biomarker of lung inflammation in a disease model. Eur. Respir. J., 28, 1236-1244.
  • [73] https://www.google.pl/search?q=nafion+humidifier&ie=utf-8&oe=utf-8&gws_rd=cr&ei=QrR_Vr-GCsXVyAOgso7wDQ
  • [74] Wang, Ch., Sahay, P. (2009). Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits. Sensors, 9, 8230−8262.
  • [75] http://www.thoracic.org/about/overview.php
  • [76] http://www.ersnet.org/images/stories/pdf/ERS_Annual_report_1314.pdf
  • [77] Vreman, H.J., Mahoney, J.J., Stevenson, D.K. (1995). Carbon monoxide and carboxyhemoglobin. Adv. Pediatr., 42, 330-334.
  • [78] Stevenson, D.K., Vreman, H.J. (1997). Carbon monoxide and bilirubin production in neonates. Pediatr. Rev., 100, 252-259.
  • [79] Applegate, L.A., Luscher, P., Tyrrell, R.M. (1991). Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res., 51, 974-978.
  • [80] Yamaya, M., Sekizawa, K., et al. (1998). Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections. Am. J. Respir. Crit. Care Med., 158, 311-314.
  • [81] Zayasu, K., Sekizawa, K., et al. (1997). Increased carbon monoxide in exhaled air of asthmatic patients. Am. J. Respir. Crit. Care Med., 156, 1140-1143.
  • [82] Thorpe, M.J., Moll, K.D., et al. (2006). Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 311, 1595-1599.
  • [83] Le Marchand, L., Wilkens, L.R. (1992). Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: circadian patterns of excretion. Environ. Health Perspect., 98, 199-202.
  • [84] Stacewicz, T. Bielecki, Z. et al. (2016). Detection of disease markers in human breath with laser absorption spectroscopy. Opto-Electron. Rev. (to be published).
Uwagi
EN
The work presented in this paper is supported by the National Centre for Research and Development within the scope of Project No.: 179900 (PBS1/A3/7/2012).
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a73b5880-298e-48f4-a9a7-63b241755669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.