PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Colloidal Silver Nanoparticles Enhance Bulb Yield and Alleviate the Adverse Effect of Saline Stress on Lily Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salinity occurring in intensively used agricultural, industrialized, and urbanized areas is one of the main factors in soil degradation. The effect of silver nanoparticles (AgNPs) on plant growth under environmental stresses is still not fully understood. Two experiments were conducted on the response of Asiatic lilies to treatment with colloidal AgNPs. In Experiment I, the study aimed to evaluate the effect of treating 'Osasco' lily bulbs with colloidal AgNPs (0, 25, 50, 100, and 150 ppm) on growth, flowering, and bulb yield, as well as the production of bulblets. Compared with the control, the applied colloidal AgNPs at all concentrations caused an acceleration of flowering and an increase in bulb diameter and the fresh weight of the aboveground part of the plants and bulbs. In addition, treatment with colloidal AgNPs at concentrations of 100 and 150 ppm increased bulblets’ number and fresh weight. In Experiment II, the effects of colloidal AgNPs (100 ppm) and NaCl stress (600 mM) on the growth parameters, assimilation pigment content, and chemical composition of 'Bright Pixi' lily leaves were evaluated. As a result of the application of colloidal AgNPs, plants flowered faster and had increased height, petal width, fresh bulb weight, bulb diameter, and several scales in the bulb. Under NaCl stress, plants had reduced fresh weight of the aboveground part and bulb, bulb diameter, number of scales in a bulb, and contents of assimilation pigments, N, K, Ca, Cu, Mn and Zn. Colloidal AgNPs offset the adverse effects of salinity on bulb yield by increasing fresh bulb, bulb diameter, and the number of scales in lily bulbs. In conclusion, using colloidal AgNPs can contribute to developing new methods of bulbous plants production and an effective strategy to protect plants from ever-increasing land salinization.
Rocznik
Strony
338--347
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • The Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
  • The Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
  • The Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
Bibliografia
  • 1. Alkaç O.S., Öcalan O.N., Güneş M. 2022. Effect of Silver Nanoparticles Treatments on Some Characteristics of “Santander” Lily Cultivar. TURJAF, 10(2), 125–128.
  • 2. Anjum N.A., Gill S.S., Duarte A.C., Pereira E., Ahmad I. 2013. Silver nanoparticles in soil–plant systems. J. Nanopart. Res., 15, 1–26.
  • 3. Available online: https://www.globenewswire.com/news release/2022/05/16/2444012/0/en/Global-Nanotechnology-Market-to-Reach-70-7-Billionby-2026.html] (accessed on 25 March 2023)
  • 4. Ayad J., Othman Y., Al Antary T. 2019. Irrigation water salinity and potassium enrichment influenced growth and flower quality of Asiatic lily. Fresenius Environ. Bull., 28(11A), 8900–8905.
  • 5. Bai R., Lin Y., Jiang Y. 2021. Diverse genotypic variations of photosynthetic capacity, transpiration and antioxidant enzymes of lily hybrids to increasing salinity stress. Sci. Hortic., 280, 109939.
  • 6. Butcher K., Wick A.F., DeSutter T., Chatterjee A., Harmon J. 2016. Soil salinity: A threat to global food security. Agron. J., 108(6), 2189–2200.
  • 7. Byczyńska A., Zawadzińska A., Salachna P. 2018. Effects of nano-silver on bulblet production from bulb scales of lilium. Propag. Ornam. Plants, 18(3), 104–106.
  • 8. Byczyńska A., Zawadzińska A., Salachna P. 2019. Silver nanoparticles preplant bulb soaking affects tulip production. Acta Agric. Scand. B Soil Plant Sci., 69(3), 250–256.
  • 9. Chen S., Yan X., Peralta-Videa J.R., Su Z., Hong J., Zhao L. 2023. Biological Effects of AgNPs on Crop Plants: Environmental Implications and Agriculture Applications. Environ. Sci.: Nano, 10, 62–71.
  • 10. Crisan C.M., Mocan T., Manolea M., Lasca L.I., Tăbăran F.A., Mocan L. 2021. Review on silver nanoparticles as a novel class of antibacterial solutions. Appl. Sci., 11(3), 1120.
  • 11. Cvjetko P., Milošić A., Domijan A.M., Vrček I.V., Tolić S., Štefanić P.P., Letofsky-Papst I., Tkalec M., Balen B. 2017. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf., 137, 18–28.
  • 12. Fincheira P., Tortella G., Seabra A.B. Quiroz A., Diez M.C., Rubilar O. 2021. Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Planta, 254, 1–25.
  • 13. Gioi D.H., Huong B.T.T., Luu N.T.B. 2019. The effects of different concentrations of nano silver on elimination of bacterial contaminations and stimulation of morphogenesis of Sorbonne lily in vitro culture. Acta Hortic., 1237, 227-234.
  • 14. Gupta N., Upadhyaya C.P., Singh A., Abd-Elsalam K.A., Prasad R. 2018. Applications of silver nanoparticles in plant protection. Nanobiotechnology applications in plant protection, 247–265.
  • 15. Guzmán-Báez G.A., Trejo-Téllez L.I., Ramírez-Olvera S.M., Salinas-Ruíz J., Bello-Bello J.J., Alcántar- González G., Hidalgo-Contreras J.V., Gómez-Merino F.C. 2021. Silver nanoparticles increase nitrogen, phosphorus, and potassium concentrations in leaves and stimulate root length and number of roots in tomato seedlings in a hormetic manner. Dose-Response, 19(4), 15593258211044576.
  • 16. Isayenkov S.V., Maathuis F.J. 2019. Plant salinity stress: many unanswered questions remain. Front. Plant Sci., 10, 80.
  • 17. Kang Y.I., Choi Y.J., Lee Y.R., Seo K.H., Suh J.N., Lee H.R. 2021. Cut flower characteristics and growth traits under salt stress in lily cultivars. Plants, 10(7), 1435.
  • 18. León-Silva S., Fernández-Luqueño F., López-Valdez F. 2016. Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water Air Soil Pollut., 227(9), 306.
  • 19. Levard C., Hotze E.M., Lowry G.V., Brown Jr, G.E. 2012. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol., 46(13), 6900–6914.
  • 20. Li K., Ren H., Zhao W., Zhao X., Gan C. 2023. Factors affecting bulblet multiplication in bulbous plants. Sci. Hortic., 312, 111837.
  • 21. Rana R.A., Siddiqui M., Skalicky M., Brestic M., Hossain A., Kayesh E., Popov M., Hejnak V., Gupta D.R., Mahmud N.U., Islam T. 2021. Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7(10), 332.
  • 22. Salachna P., Byczyńska A., Zawadzińska A., Piechocki R., Mizielińska M. 2019. Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy, 9(10), 610.
  • 23. Salachna P., Grzeszczuk M., Meller E., Mizielińska M. 2019. Effects of gellan oligosaccharide and NaCl stress on growth, photosynthetic pigments, mineral composition, antioxidant capacity and antimicrobial activity in red perilla. Molecules, 24(21), 3925.
  • 24. Salachna P., Mizielińska M., Płoszaj-Witkowska B., Jaszczak A. 2021. Zinc oxide nanoparticles enhanced biomass and zinc content and induced changes in biological properties of red Perilla frutescens. Materials, 14(20), 6182.
  • 25. Salachna P., Zawadzińska A., Podsiadło C. 2016. Response of Ornithogalum saundersiae Bak. to salinity stress. Acta Sci. Pol. Hortorum Cultus, 15(1), 123–134.
  • 26. Siddiqi K.S., Husen A. 2022. Plant response to silver nanoparticles: a critical review. Crit. Rev. Biotechnol., 42(7), 973–990.
  • 27. Simkin A.J., Kapoor L., Doss C.G.P., Hofmann T.A., Lawson T., Ramamoorthy S. 2022. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth. Res., 152(1), 23–42.
  • 28. Sochacki D., Woźniak E., Marciniak P. 2018. The effect of selected factors on micropropagation efficacy and on the first bulb yield in Hippeastrum× chmielii Chm. and H. hybridum ‘Double Roma’. Propag. Ornam. Plants, 18(3), 87–96.
  • 29. Sun J., Wang L., Li S., Yin L., Huang J., Chen C. 2017. Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway. Environ. Toxicol. Chem., 36, 2773–2780.
  • 30. Tang N., Ju X., Hu Y., Jia R., Tang D. 2020. Effects of Temperature and Plant Growth Regulators on the Scale Propagation of Lilium davidii var. unicolor. HortScience, 55(6), 870–875.
  • 31. Wang P., Lombi E., Sun S., Scheckel K.G., Malysheva A., McKenna B.A., Menzies N.W, Zhao F.-J., Kopittke P.M. 2017. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environ. Sci., 4, 448–460.
  • 32. Wang P., Lombi E., Zhao F.J., Kopittke, P.M. 2016. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci., 21(8), 699–712.
  • 33. Wojdyła A.T., Nowak J.S., Bocianowski J., Wiśniewski J., Waszkiewicz E. 2022. Effect of Hyacinth Treatment by Hydrogen Peroxide Stabilized with Silver and Some Fungicides on the Fungal Infection of Substrate and Bulbs and on Plant Growth and Development. Agronomy, 12(11), 2894.
  • 34. Yadav S.K., Lal S., Yadav S., Laxman J., Verma B., Sushma M., Choudhary R., Singh P.K., Singh S.P., Sharma V. 2019. Use of nanotechnology in agrifood sectors and apprehensions: an overview. Seed Res., 47(2), 99–149.
  • 35. Yan X., Chen S., Pan Z., Zhao W., Rui Y., Zhao L. 2023. AgNPs-Triggered Seed Metabolic and Transcriptional Reprogramming Enhanced Rice Salt Tolerance and Blast Resistance. ACS Nano, 17(1), 492–504.
  • 36. Yaqoob A.A., Umar K., Ibrahim M.N.M. 2020. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl. Nanosci., 10, 1369–1378.
  • 37. Yashwant Y.S., Deepika D.C., Tansukh T.B. 2022. Impact of nanotechnology on environment and their role in agronomy and food stuffs production: an overview: role of nanotechnology in agronomy. Biomaterials, 1(2), 1–4.
  • 38. Zawadzińska A., Salachna P., Nowak J.S., Kowalczyk W., Piechocki R., Łopusiewicz Ł., Pietrak A. 2022. Compost based on pulp and paper mill sludge, fruit-vegetable waste, mushroom spent substrate and rye straw improves yield and nutritional value of tomato. Agronomy, 12(1), 13.
  • 39. Zhao L., Lu L., Wang A., Zhang H., Huang M., Wu H., Xing B., Wang Z., Ji R. 2020. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem., 68(7), 1935–1947.
  • 40. Zhou J., An R., Huang X. 2021. Genus Lilium: A review on traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 270, 113852.
  • 41. Zulfiqar F., Ashraf M. 2021. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem., 160, 257–268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a739b881-27b0-4cec-a464-0e52480f2ddb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.