PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of components and parameters of some sulfide minerals surface tension with regards to stability of mineral-air bubble system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The measurements of the advancing contact angle of water, glycerol, formamide, ethylene glycol, diiodomethane, α-bromonaphthalene, 1,2,3-tribromopropane on unoxidized and oxidized galena, pyrite, chalcopyrite, djurleite, bornite and covellite at the temperature equal 293 K were made. Additionally, the measurements of the force air bubble detachment from these sulfide minerals including also chalcocite in water were performed. Using the values of the obtained contact angle of water, glycerol, formamide, ethylene glycol, diiodomethane, α-bromonaphthalene, 1,2,3-tribromopropane the components and parameters of the unoxidized and oxidized sulfide minerals surface tension were calculated. For this calculation the van Oss et al. method was applied after analysis of the components and parameters of the surface tension of liquids used for contact angle measurements. Taking into account the contact angle of water on the sulfide minerals, the detachment force of air bubble from these minerals in water was determined using our equation and comparing to that of measured one. As follows from the measurements and calculations the wetting properties of sulfide minerals and the stability of mineral-air bubble depends to a larger extent on the degree of sulfide minerals oxidation than on the type of mineral.
Rocznik
Strony
22--31
Opis fizyczny
Bibliogr. 23 poz., tab., wykr., wz.
Twórcy
  • Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
  • Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
Bibliografia
  • CHIBOWSKI, E., 2003, Surface free energy of a solid from contact angle hysteresis, Adv. Colloid Interface Sci. 103, 149- 172.
  • ADAMSON, A.W., GAST, A.P., 1997, Physical Chemistry of Surfaces, sixth ed., Wiley-Interscience, New York.
  • FOWKES, F.M., 1964, Attractive forces at interfaces, Ind. Eng. Chem. 56, 40-52.
  • GOOD, R.J., GIRILACO, L.A., 1960, A theory for estimation of surface and interfacial energies. II. estimation of surface energies of solids from contact angle data, J. Phys. Chem. 64, 561-565.
  • FU, K. B., LIN, H., CHAN, S., WANG, X. F., 2015, Comparison of adhesion of A. ferrooxidans on different copper sulfides: Surface thermodynamics and extended DLVO theory, Minerals a Metallurgical Processing, 32, 121-128.
  • HU, P., ADAMSON, A. W.,1977. Adsorption contact angle studies. II. Water and organic substances on polished polytetrafluoroethylene. J Colloid Interface Sci., 59, 605-614.
  • JAŃCZUK, B., 1983, Detachment force of air bubble from the solid surface (sulfur or graphite) in water, J. Colloid Interface Sci., 93, 411-418.
  • JAŃCZUK, B., BIAŁOPIOTROWICZ, T., 1989, Adhesion of air bubble to Teflon surface in water, J. Colloid Interface Sci., 128, 1-6.
  • JAŃCZUK, B., WÓJCIK, W., ZDZIENNICKA, A.,1993, Determination of the components of the surface tension of some liquids from interfacial liquid-liquid tension measurements, J. Colloid Interface Sci., 157, 384-393.
  • JAŃCZUK, B., ZDZIENNICKA, A., 2018, Components and parameters of synthetic chalcocite surface tension and its wettability by aqueous solution of n-octyl-β-D-glucopyranoside, Physicochem. Probl.. Miner. Process., 54, 19-30.
  • KLOUBEK, J., 1992, Development of methods for surface free energy determination using contact angles of liquids on solids, Adv. Colloid Interface Sci. 38, 99-142.
  • KWOK, D.Y., NEUMANN, A.W., 1999, Contact angle measurement and contact angle interpretation, Adv. Colloid Interface Sci., 81, 167-249.
  • KWOK, D.Y., NEUMANN, A.W, 2000, Contact angle interpretation in terms of solid surface tension, Colloids Surf. A, 161, 31-48.
  • LEJA, J., 1982, Surface Chemistry of froth flotation, Plenum, New York, pp. 489-517.
  • LI, D., NEUMANN, A.W., 1992, Equation of state for interfacial tensions of solid-liquid systems, Adv. Colloid Interface Sci. 39, 299-345.
  • OWENS, D.K., WENDT, R.C., 1969, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13, 1741-1747.
  • VAN OSS, C.J., 1994, Interfacial Forces in Aqueous Media, Marcel Dekker, New York.
  • VAN OSS, C.J., GOOD, R.J., 1989, Surface tension and the solubility of polymers and biopolymers: the role of polar and apolar interfacial free energies, J. Macromol. Sci. 26, 1183-1203.
  • VAN OSS, C.J., GOOD, R.J., CHAUDHURY, M.K., 1988, Additive and nonadditive surface tension components and the interpretation of contact angles, Langmuir 4, 884-891.
  • WU, S., 1970, Surface and interfacial tensions of polymer melts. II. Poly(methyl methacrylate), poly(n-butyl methacrylate), and polystyrene, J. Phys Chem. 74, 632-638.
  • ZDZIENNICKA, A., SZYMCZYK, K., JAŃCZUK, B., 2009, Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants, J. Colloid Interface Sci., 340, 243-248.
  • ZDZIENNICKA, A., SZYMCZYK, K., KRAWCZYK, J., JAŃCZUK, B., 2017a, Some remarks on the solid surface tension determination fromcontact angle measurements, App. Sur. Sci., 405, 88-101.
  • ZDZIENNICKA. A., KRAWCZYK. J., SZYMCZYK, K., JAŃCZUK, B., 2017b, Components and parameters of liquids and some polymers surface tension at different temperature, Colloids Sur. A, 529, 864-875.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a737644b-9d0b-4789-bd59-84cd549f44a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.