Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a novel method for measuring three-dimensional (3D) water surface dynamics in a partially filled pipe. The study on investigation of the 3D free surface dynamics in partially filled pipes is very limited. The method involves tinting the water white with titanium dioxide so that the water surface appears like a solid surface to image-based measuring systems. This method uses a high-resolution projector to project a stochastic pattern of light onto the water surface and uses two high-resolution cameras to capture the pattern on the deformed water surface. The 3D instantaneous water surface fluctuations can be computed from the images captured by the two cameras using a standard Digital Image Correlation algorithm. It is demonstrated that the surface dynamics parameters of turbulent flow in partially filled pipes, including surface fluctuations and surface velocity, can be measured using the projector, high-resolution cameras and DIC algorithm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2451--2467
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Department of Civil and Structural Engineering, University of Shefeld, Shefeld, UK
autor
- Department of Civil and Structural Engineering, University of Shefeld, Shefeld, UK
autor
- Department of Mechanical Engineering, University of Shefeld, Shefeld, UK
autor
- Dynamic Flow Technologies Ltd., Loughborough, UK
Bibliografia
- 1. Camp TR (1946) Design of sewers to facilitate flow. Sewage Works J 18(1), 3–16. https://doi.org/154.59.124.32
- 2. Caplier C, Gomit G, Rousseaux G, Calluaud D, Chatellier L, David L (2019) Calibrating and measuring wakes and drag forces of inland vessels in confined water in a towing tank. Ocean Eng. https://doi.org/10.1016/J.OCEANENG.2019.106134
- 3. Chang CT, Bostwick JB, Steen PH, Daniel S (2013) Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops. Phys Rev E 88:23015. https://doi.org/10.1103/PhysRevE.88.023015
- 4. Cobelli PJ, Agnè AE, Ae M, Ae VP, Petitjeans P, Maurel A, Pagneux V, Petitjeans P (2009) Global measurement of water waves by Fourier transform profilometry. Exp Fluids 46(6):1037–1047. https://doi.org/10.1007/s00348-009-0611-z
- 5. DantecDynamics (2018) ISTRA 4D software Manual Q-400 system
- 6. Dolcetti G (2016) Remote monitoring of shallow turbulent flows based on the Doppler spectra of airborne ultrasound. Ph. D. thesis, The University of Sheffield
- 7. Douxchamps D, Devriendt AD, Capart AH, Craeye AC, Macq B, Zech AY (2005) Stereoscopic and velocimetric reconstructions of the free surface topography of antidune flows. Exp Fluids. https://doi.org/10.1007/s00348-005-0983-7
- 8. Eddi A, Sultan E, Moukhtar J, Fort E, Rossi M, Couder Y (2011) Information stored in Faraday waves: The origin of a path memory. J Fluid Mech 674:433–463. https://doi.org/10.1017/S0022112011000176
- 9. Fujita I (2017) Discharge measurements of snowmelt flood by space-time image velocimetry during the night using far-infrared camera. Water (Switzerland) 9(4):269. https://doi.org/10.3390/w9040269
- 10. Fujita I, Furutani Y, Okanishi T (2011) Advection features of water surface profile in turbulent open-channel flow with hemisphere roughness elements. Vis Mech Process 1(4):1–8. https://doi.org/10.1615/VisMechProc.v1.i3.70
- 11. Gomit G, Chatellier L, Calluaud D, David L, Fréchou D, Boucheron R, Perelman O, Hubert C (2015) Large-scale free surface measurement for the analysis of ship waves in a towing tank. Exp Fluids 56(10):1–13. https://doi.org/10.1007/s00348-015-2054-z
- 12. Gschwandl M, Frewein M, Fuchs PF, Antretter T, Pinter G, Novak P (2019) Evaluation of digital image correlation techniques for the determination of coefficients of thermal expansion for thin reinforced polymers. 20th International conference on electronic materials and packaging: 3–6. https://doi.org/10.1109/EMAP.2018.8660763
- 13. Horoshenkov KV, Nichols A, Tait SJ, Maximov GA (2013) The pattern of surface waves in a shallow free surface flow. J Geophys Res: Earth Surf 118(3):1864–1876. https://doi.org/10.1002/jgrf.20117
- 14. Horoshenkov KV, Van Renterghem T, Nichols A, Krynkin A (2016) Finite difference time domain modelling of sound scattering by the dynamically rough surface of a turbulent open channel flow. Appl Acoust 110(February):13–22. https://doi.org/10.1016/j.apacoust.2016.03.009
- 15. Jain U, Gauthier A, Van Der Meer D (2021) Total-internal-reflection deflectometry for measuring small deflections of a fluid surface. Exp Fluids 62:235–236. https://doi.org/10.1007/s00348-021-03328-y
- 16. Krynkin A, Horoshenkov KV, Nichols A, Tait SJ (2014) A non-invasive acoustical method to measure the mean roughness height of the free surface of a turbulent shallow water flow. Rev Sci Instrum 10(1063/1):4901932
- 17. Martin H, Miroslav P (2021) A complex review of the possibles of residual stress analysis using moving 2D and 3D digital image correlation system. J Mech Eng 71(1):61–78. https://doi.org/10.2478/scjme-2021-0006
- 18. MATLAB (2019) scatteredinterpolant. MATLAB version 9.6.0.1150989 (R2019a)
- 19. Moisy F, Rabaud M, Salsac K (2009) A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp Fluids 46(6):1021–1036. https://doi.org/10.1007/s00348-008-0608-z
- 20. Mrówka M, Machoczek T, Jureczko P, Joszko K, Gzik M, Wolański W, Wilk K (2021) Mechanical, chemical, and processing properties of specimens manufactured from poly-ether-ether-ketone (Peek) using 3d printing. Materials. https://doi.org/10.3390/ma14112717
- 21. Ng HC, Collignon E, Poole RJ, Dennis DJ (2021) Energetic motions in turbulent partially filled pipe flow. Phys Fluids 10(1063/5):0031639
- 22. Nichols A (2014) Free surface dynamics in shallow turbulent flows. Ph. D. thesis, University of Bradford
- 23. Nichols A, Rubinato M, Cho YH, Wu J (2020) Optimal use of titanium dioxide colourant to enable water surfaces to be measured by kinect sensors. Sens (Switz) 20(12):1–17. https://doi.org/10.3390/s20123507
- 24. Nichols A, Tait S, Horoshenkov K, Shepherd S (2013) A non-invasive airborne wave monitor. Flow Measure Instrum 34:118–126. https://doi.org/10.1016/j.flowmeasinst.2013.09.006
- 25. Nichols A, Tait SJ, Horoshenkov KV, Shepherd SJ (2016) A model of the free surface dynamics of shallow turbulent flows. J Hydraul Res 54(5):516–526. https://doi.org/10.1080/00221686.2016.1176607
- 26. Savelsberg R, Holten A, Van De Water W (2006) Measurement of the gradient field of a turbulent free surface. Exp Fluids 41(4):629–640. https://doi.org/10.1007/s00348-006-0186-x
- 27. Simonini A, Fontanarosa D, De Giorgi MG (2020) Vetrano MR (2021) Mode characterization and damping measurement of liquid sloshing in cylindrical containers by means of reference image topography. Exp Therm Fluid Sci. https://doi.org/10.1016/j.expthermflusci.2020.110232
- 28. Tani K, Fujita I (2020) Application of the sampling moiré method to shallow open-channel flows with circular roughness elements. Flow Measure Instrum. https://doi.org/10.1016/j.flowmeasinst.2020.101845
- 29. Techens C, Palanca M, Éltes PE, Lazáry Á, Cristofolini L (2020) Testing the impact of discoplasty on the biomechanics of the intervertebral disc with simulated degeneration: an in vitro study. Med Eng Phys 84:51–59. https://doi.org/10.1016/j.medengphy.2020.07.024
- 30. Tsubaki R, Fujita I, Fujuta I, Fujita I (2005) Stereoscopic measurement of a fluctuating free surface with discontinuities. Measure Sci Technol 16(10):1894–1902. https://doi.org/10.1088/0957-0233/16/10/003
- 31. Turney DE, Anderer A, Banerjee S (2009) A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an air-water interface. Meas Sci Technol. https://doi.org/10.1088/0957-0233/20/4/045403
- 32. von Häfen H, Stolle J, Nistor I, Goseberg N (2021) Side-by-side entrainment and displacement of cuboids due to a tsunami-like wave. Coast Eng. https://doi.org/10.1016/j.coastaleng.2020.103819
- 33. Wanek JM, Wu CH (2006) Automated trinocular stereo imaging system for three-dimensional surface wave measurements. Ocean Eng 33(5–6):723–747. https://doi.org/10.1016/j.oceaneng.2005.05.006
- 34. Welber M, Coz JL, Laronne JB, Zolezzi G, Zamler D, DramaisG Hauet A, Salvaro M (2016) Field assessment of noncontact stream gauging using portable surface velocity radars (SVR). J Am Water Res Assoc 52:1108–1126. https://doi.org/10.1002/2015WR017906
- 35. Wu J, Nichols A, Krynkin A, Croft M (2022) Objective phase-space identification of coherent turbulent structures in 1D time series data. Journal of Hydraulic Research: Accepted
- 36. Yan S, Zeng X (2018) Long A (2019) Meso-scale modelling of 3D woven composite T-joints with weave variations. Compos Sci Technol 171:171–179. https://doi.org/10.1016/j.compscitech.2018.12.024
- 37. Zhang X, Cox CS (1994) Measuring the two-dimensional structure of a wavy water surface optically: a surface gradient detector. Exp Fluids 17(4):225–237. https://doi.org/10.1007/BF00203041
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a736577e-8f1c-47e4-be11-e5f5df1c1e7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.