PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recognition of the atmospheric contamination source localization with the Genetic Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have applied the Genetic Algorithm (GA) to the problem of the atmospheric contaminant source localization. The algorithm input data are concentrations of given substance registered by sensor network. To achieve rapid-response event reconstruction,the fast-running Gaussian plume dispersion model is adopted as the forward model. The proposed GA scans 5-dimensional parameters space searching for the contaminant source coordinates (x,y), release strength (Q) and the atmospheric transport dispersion coefficients. Based on the synthetic experiment data the GA parameters like population size, number of generations and the genetic operators best suitable for the algorithm performance are identified. We demonstrate that proposed GA configuration can successfully point out the parameters of abrupt contamination source. Results indicate the probability of a source to occur at a particular location with a particular release rate. The shapes of the probability distribution function of searched parameters values reflect the uncertainty in observed data.
Rocznik
Strony
27--42
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • National Centre for Nuclear Research, Swierk−Otwock, Poland
  • Institute of Computer Sciences, Siedlce University, Siedlce, Poland
  • Institute of Computer Sciences, Siedlce University, Siedlce, Poland
  • National Centre for Nuclear Research, Swierk−Otwock, Poland
Bibliografia
  • 1. Allen C.T, Haupt S.E., Source Characterization with a Genetic Algorithm–Coupled Dispersion–Backward Model Incorporating SCIPUFF, Department of Meteorology, The Pennsylvania State University, 2006.
  • 2. Bagchi T.P., Multiobjective Scheduling by Genetic Algorithms, 1999.
  • 3. Borysiewicz M., Wawrzynczak A., Kopka P., Stochastic algorithm for estimation of the model's unknown parameters via Bayesian inference, Proceedings of the Federated Conference on Computer Science and Information Systems, 501-508, IEEE Press, (2012a).
  • 4. Borysiewicz M., Wawrzynczak A., Kopka P., Bayesian-Based Methods for the Estimation of the Unknown Model's Parameters in the Case of the Localization of the Atmospheric Contamination Source, Foundations of Computing and Decision Sciences, 37, 4, 253-270, (2012b).
  • 5. Chwee K., Switching Control Systems and Their Design Automation via Genetic Algorithms, PhD Thesis, University of Glasgow, 1995.
  • 6. Eiben A.E., Hinterding R. and Michalewicz Z., ‘Parameter Control in Evolutionary Algorithms’, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, 1999.
  • 7. Gifford F.A. Jr., Atmospheric dispersion calculation using generalized Gaussian Plum model, Nuclear Safety, 1960, 2(2): 56-59, 67-68.
  • 8. Goldberg D.E., ‘Genetic Algorithms in Search, Optimization and Machine Learning’, Addison Wesley Longman, London, 2006.
  • 9. Goodall R.M., Michail K., Whidborne J.F. Zolotas A.C, Optimised Configuration of Sensing Elements for Control and Fault Tolerance Applied to an Electro-Magnetic Suspension, PhD Thesis, Loughborough University, UK, 2009
  • 10. Holland J.H., “Adaptation in Natural and Artificial Systems”, 2nd Edn. Cambridge, MIT Press, 1992.
  • 11. Johannesson G. et al., Sequential Monte-Carlo based framework for dynamic datadriven event reconstruction for atmospheric release, Proc. of the Joint Statistical Meeting, Minneapolis, MN, American Statistical Association and Cosponsors, 2005, 73–80.
  • 12. Johannesson G., Hanley W., and Nitao J., Dynamic Bayesian models via Monte Carlo - An introduction with examples, Lawrence Livermore National Laboratory Tech. Rep., 2004, 53.
  • 13. Keats A., E. Yee, and F.S. Lien, Bayesian inference for source determination with applications to a complex urban environment. Atmos. Environ., 41, 2007, 465–479.
  • 14. Monache L.D. et al., Bayesian Inference and Markov Chain Monte Carlo Sampling to Reconstruct a Contaminant Source on a Continental Scale, Journal of Applied Meteorology And Climatology, 47, 2008, 2600-2613.
  • 15. Pasquill F., The estimate of the dispersion of windborne material, MeteorolMag., 90, 1063, 1961, 33-49.
  • 16. Pudykiewicz, J.A., Application of adjoint tracer transport equations for evaluating source parameters. Atmos. Environ., 32, 1998, 3039-3050.
  • 17. Roeva O., Stefka Fidanova, Marcin Paprzycki , Influence of the Population Size on the Genetic Algorithm Performance in Case of Cultivation Process Modelling, Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, pages 371-376, 2013.
  • 18. Saremi A., Mekkawy T. Y. E. and Wang G.G., “Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments”, International Journal of Operations Research, Vol. 4, No. 4, 2007, pp. 206-219.
  • 19. Turner D. Bruce, Workbook of Atmospheric Dispersion Estimates, Lewis Publishers, USA, 1994.
  • 20. Wawrzynczak A., Kopka P., Borysiewicz M., Sequential Monte Carlo in Bayesian assessment of contaminant source localization based on the distributed sensors measurements, Lecture Notes in Computer Sciences 8385, PPAM 2013, Part II, 407-417, 2014, doi:10.1007/978-3-642-55195-6_38
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7342888-5129-44f9-bb5d-8f4efcf0e138
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.