Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Current ecological trends and resulting legislation like European emissions standards Euro 6d or Best Available Techniques are setting new challenges in the field of environmental protection. Since the problem of emissions of particulate matter from diesel engines was solved by the application of diesel particulate filters (DPFs or FAPs) and due to the global dominance of gasoline fuelled passenger cars, particular concern has been focused on improvement of emissions performance of gasoline vehicles, including hybrids, as well as heavy-duty and non-road vehicles. This paper presents the results of preliminary studies on the chemical and physical properties of gasoline engine-generated particles, including nanoparticles. SEM images were presented which allowed identification of the character of particulate matter and estimates of the dimensions of particles. Moreover, the particles were found to be composed of different elements, including Cu, Si, Na, Ca, Zn and P, pointing to the origination of these particles from the pistons and lubricant additives.
Czasopismo
Rocznik
Tom
Strony
33--39
Opis fizyczny
Bibliogr. 37 poz., il.
Twórcy
autor
- Faculty of Energy and Fuels, AGH University of Science and Technology, Poland
autor
- BOSMAL Automotive Research and Development Institute Ltd in Bielsko-Biała, Poland
autor
- Faculty of Energy and Fuels, AGH University of Science and Technology, Poland
autor
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Poland
autor
- BOSMAL Automotive Research And Development Institute Ltd in Bielsko-Biała, Poland
autor
- Faculty of Energy and Fuels, AGH University of Science and Technology, Poland
Bibliografia
- [1] STYSZKO, K., SAMEK, L., KISTLER, M. et al. Chemical characterization of PM10 from Krakow including heavy metals. Mercur Environ Identif Threat Hum Heal. 2013, 19-27.
- [2] SZRAMOWIAT, K., STYSZKO, K., KISTLER, M. et al. Carbonaceous species in atmospheric aerosols from the Krakow area (Malopolska District): carbonaceous species dry deposition analysis. E3S Web Conf. 2016, 10.
- [3] SZRAMOWIAT, K. The chemical characterization and identification of emission sources of atmospheric aerosols from the Kraków agglomeration. AGH University of Science and Technology. 2017.
- [4] WHITBY, K.T. Proceedings of the International Symposium, The physical characteristics of sulfur aerosols. Atmos Environ. 1978, 12, 135-159. DOI:10.1016/0004-6981(78) 90196-8.
- [5] SEINFELD J.H., PANDIS, S.N. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons. 1986.
- [6] Aftertreatment systems design, development and evaluation of ICE n.d. http://www.en.clean-power.com.cn.
- [7] BIELACZYC, P., WOODBURN, J. Current directions in LD powertrain technology in response to stringent exhaust emissions and fuel efficiency requirements. Combust Engines. 2016, 166, 62-75.
- [8] KARJALAINEN, P., RÖNKKÖ, T., PIRJOLA, L. et al. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions. Environ Sci Technol. 2014, 48, 2336-2343. doi:10.1021/es405009g.
- [9] SWANSON, J.J., KITTELSON, D.B., WATTS, W.F. et al. Influence of storage and release on particle emissions from new and used CRTs. Atmos Environ. 2009, 43, 3998-4004. DOI:10.1016/j.atmosenv.2009.05.019.
- [10] KITTELSON, D.B. Engines and nanoparticles: a review. J Aerosol Sci. 1998, 29, 575-588. DOI:10.1016/S0021-8502(97)10037-4.
- [11] CZERWINSKI, J., MAYER, A., WICHSER, A. Effects of fuel tracing on nanoparticles from a Diesel engine. Combust Engines. 2015, 160, 3-10.
- [12] ROTH, M., USEMANN, J., BISIG, C. et al. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro. Toxicol Vitr. 2017, 45, 101-110. DOI:10.1016/J.TIV.2017.08.016.
- [13] SZRAMOWIAT, K., STYSZKO, K., SAMEK, L. et al. Chemical composition of particles emitted from stationary and mobile sources. 2nd Int. Conf. Sustain. Energy Environ. Dev. (SEED’17), Kraków, Novemb. 14-17, 2017, 2017.
- [14] WHO. Review of evidence on health aspects of air pollution -REVIHAAP Project Technical Report. 2013.
- [15] STYSZKO, K., SAMEK, L., SZRAMOWIAT, K. et al. Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Qual Atmos Heal. 2017. DOI:10.1007/s11869-017-0499-3.
- [16] BERENT, K., FARYNA, M. High resolution EBSD/SEM analysis of PLZT ferroelectric crystals in low vacuum conditions - a few practical remarks. Solid State Phenom. 2012, 186, 62-65. DOI:10.4028/www.scientific.net/ssp. 186.62.
- [17] YANG, H., LI, X., WANG, Y. et al. Experimental investigation into the oxidation reactivity and nanostructure of particulate matter from diesel engine fuelled with diesel/polyoxymethylene dimethyl ethers blends. Sci Rep. 2016, 6, 37611.
- [18] POTENZA, M., MILANESE, M., DE RISI, A. Effect of injection strategies on particulate matter structures of a turbocharged GDI engine. Fuel. 2019, 237, 413-428. DOI:10.1016/j.fuel.2018.09.130.
- [19] Fabiańska, M., Kozielska, B., Bielaczyc, P. et al. Geochemical markers and polycyclic aromatic hydrocarbons in solvent extracts from diesel engine particulate matter. Environ Sci Pollut Res Int. 2016, 23, 6999-7011. DOI: 10.1007/s11356-015-5996-z.
- [20] KORZENIEWSKA, A., SZRAMOWIAT, K., GOŁAŚ, J. An overview of the challenges in the studies of solid particle emission. 2nd Int. Conf. Sustain. Energy Environ. Dev. (SEED’17), Kraków, Novemb. 14-17, 2017, 2017.
- [21] SZRAMOWIAT, K., STYSZKO, K., SAMEK, L. et al. The effect of fuel applied on the chemical composition of PM generated in combustion processes. 2018.
- [22] LIATI, A., DIMOPOULOS EGGENSCHWILER, P., MÜLLER GUBLER, E. et al. Investigation of diesel ash particulate matter: A scanning electron microscope and transmission electron microscope study. Atmos Environ. 2012, 49, 391-402. DOI:10.1016/j.atmosenv.2011.10.035.
- [23] GENGA, A., BAGLIVI, F., SICILIANO, M. et al. SEMEDS investigation on PM10 data collected in Central Italy: principal component analysis and hierarchical cluster analysis. Chem Cent J. 2012, 6, Suppl 2, S3-S3. DOI: 10.1186/1752-153X-6-S2-S3.
- [24] QUEROL, X., PEY, J., MINGUILLÓN, M.C. et al. PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmos Chem Phys. 2008, 8, 111-128. DOI:10.5194/acp-8-111-2008.
- [25] ALANEN, J., SAUKKO, E., LEHTORANTA, K. et al. The formation and physical properties of the particle emissions from a natural gas engine. Fuel. 2015, 162, 155-161. doi:10.1016/j.fuel.2015.09.003.
- [26] GIECHASKIEL, B., RICCOBONO, F., VLACHOS, T. et al. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS). Front Environ Sci. 2015, 3, 82.
- [27] BIELACZYC, P., WOODBURN, J., SZCZOTKA, A. Investigations into Particulate Emissions from Euro 5 passenger cars with DISI engines tested at multiple ambient temperatures. SAE Technical Paper. 2015. DOI: 10.4271/2015-24-2517.
- [28] BIELACZYC, P., SZCZOTKA, A., WOODBURN, J. Investigations into exhaust particulate emissions from multiple vehicle types running on two chassis dynamometer driving cycles. SAE Technical Paper. 2017. DOI: 10.4271/2017-01-1007.
- [29] FUSHIMI, A., KONDO, Y., KOBAYASHI, S. et at. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature. Atmos Environ. 2016, 124, 77-84. DOI:10.1016/j.atmosenv.2015.11.017.
- [30] KŘŮMAL, K., MIKUŠKA, P., VEČEŘA, Z. Polycyclic aromatic hydrocarbons and hopanes in PM1 aerosols in urban areas. Atmos Environ. 2013, 67, 27-37. DOI:10.1016/j.atmosenv.2012.10.033.
- [31] SCHAUER, J.J., LOUGH, G.C., SHAFER, M.M. et al. Characterization of metals emitted from motor vehicles. Res Rep Health Eff Inst. 2006, 133, 1-76.
- [32] MATĚJKA, V., METINÖZ, I., WAHLSTRÖM, J. et al. On the running-in of brake pads and discs for dyno bench tests. Tribol Int. 2017, 115, 424-431. DOI:10.1016/j.triboint.2017. 06.008.
- [33] KUMAR, P., PIRJOLA, L., KETZEL, M., HARRISON, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review. Atmos Environ. 2013, 67, 252-277. DOI:10.1016/j.atmosenv.2012.11.011.
- [34] HEDBERG, Y.S., HEDBERG, J.F., ISAKSSON, S. et al. Nanoparticles of WC-Co, WC, Co and Cu of relevance for traffic wear particles - Particle stability and reactivity in synthetic surface water and influence of humic matter. Environ Pollut. 2017, 224, 275-288. DOI:10.1016/j.envpol. 2017.02.006.
- [35] BIELACZYC, P., WOODBURN, J., KLIMKIEWICZ, D. et al. An examination of the effect of ethanol-gasoline blends’ physicochemical properties on emissions from a light-duty spark ignition engine. Fuel Process Technol. 2013, 107, 50-63. DOI:10.1016/j.fuproc.2012.07.030.
- [36] BIELACZYC, P., WOODBURN, J., SZCZOTKA, A., PAJDOWSKI, P. The impact of alternative fuels on fuel consumption and exhaust emissions of greenhouse gases from vehicles featuring SI engines. Energy Procedia. 2015, 66, 21-24. DOI:10.1016/j.egypro.2015.02.011.
- [37] BOSMAL Automotive Research and Development Institute. Unpublished data. 2018.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a73343c8-e772-4c9f-be2e-f600ac1b58a5