Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wastewater treatment facilities at high places can give chances for renewable and sustainable energy generation by putting hydroelectric turbines at the input and drain channels of wastewater treatment plants, and they can also use the sludge generated during the treatment process to make biogas, which can be used to generate power. Purified water is subsequently used to irrigate decorative plants along highways, in gardens, and in woods. The fermentation wastes are utilized as organic fertilizer to improve agricultural soil quality. At the Gharyan sewage station, a hybrid system consisting of a hydroelectric station and an electric generator powered by biogas is proposed in this research. This is because the city is distinguished by its high location, which is approximately 713 m above sea level. The results showed that the proposed system would provide an electric power of 490 kW, which is sufficient to cover 87.5% of the electrical energy consumption of the station. The amount of treated water is approximately 13,000 m3/day, and the amount of organic fertilizer is about 17 tons/day. The investment value is anticipated to be around $1,478,000, while the cost of producing a unit of electric energy is expected to be 2.83 ¢/kWh. This system's yearly net profit is predicted to be $307,765. The capital's recovery period is anticipated to be 3.44 years. The planned hybrid system will limit the discharge of an estimated 1,886 tons of CO2 gas each year.
Wydawca
Czasopismo
Rocznik
Tom
Strony
46--56
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Faculty of Technology and Education, Helwan University Cairo, Egypt
autor
- Center for Renewable Energy and Sustainable Development Research and Studies, Wadi Alshatti University Brack, Libya
autor
- Physics Department, Faculty of Science, Derna University Derna, Libya
autor
- Higher Institute of Sciences and Technology – Tamezawa Brack, Libya
autor
- Electrical Engineering and Smart Systems Department., Faculty of Engineering, Islamic University of Gaza Gaza Strip, Palestine
autor
- Research and Development Department, College of Civil Aviation Misrata, Libya
autor
- Mechanical Engineering Department, Bani Walid University Bani Walid, Libya
autor
- Electrical and Electronic Engineering Department, Faculty of Technical Sciences-Sebha Sebha, Libya
autor
- Environment and Natural Resources Faculty, Wadi Alshatti Uni. Brack, Libya
autor
- Electrical Eng. Department, Assiut University Assiut, Egypt
Bibliografia
- [1] A.A. Makhzom, A.M. Eshdok, Y.F. Nassar, S.Y. Alsadi, T.H. Foqha, M.A. Salem, I.M. Alshareef, H.J. El-Khozondar, Estimation of CO2 emission factor for Power Industry Sector in Libya, in: 8th Int. Eng. Conf. Renew. Energy Sustain. IeCRES 2023, IEEE, 2023: pp. 1–6. https://doi.org/10.1109/ieCRES57315.2023.10209528.
- [2] Y.F. Nassar, K.R. Aissa, S.Y. Alsadi, Air Pollution Sources in Libya , Res. Rev. J. Ecol. Environ. Sci. 6 (2017) 63–79.
- [3] A. Almabrouk, S. Abulifa, The technology of renewable energy and its role in achieving sustainable development, Int. J. Electr. Eng. Sustain. 1 (2023) 1–9.
- [4] M. Andeef, K. Bakouri, B. Ahmed, A. Gait, F. El-Batta, T. Foqha, H. Qarqad, The role of renewable energies in achieving a more secure and stable future, Int. J. Electr. Eng. Sustain. 1 (2023) 11–20.
- [5] Y.F. Nassar, H.J. El-Khozondar, W. El-Osta, S. Mohammed, M. Elnaggar, M. Khaleel, A. Ahmed, A. Alsharif, Carbon footprint and energy life cycle assessment of wind energy industry in Libya, Energy Convers. Manag. 300 (2024) 117846. https://doi.org/10.1016/j.enconman.2023.117846.
- [6] A. Elmariami, W. El-Osta, Y. Nassar, Y. Khalifa, M. Elfleet, Life Cycle Assessment of 20 MW Wind Farm in Libya, Appl. Sol. Energy (English Transl. Geliotekhnika). 59 (2023) 64–78. https://doi.org/10.3103/S0003701X22601557.
- [7] Y.F. Nassar, H.J. El-Khozondar, W. El-Osta, S. Mohammed, M. Elnaggar, M. Khaleel, A. Ahmed, A. Alsharif, Carbon footprint and energy life cycle assessment of wind energy industry in Libya, Energy Convers. Manag. 300 (2024) 50–68. https://doi.org/10.1016/j.enconman.2023.117846.
- [8] A.M. Jary, M. Elmnifi, Z. Said, L.J. Habeeb, H. Moria, Potential wind energy in the cities of the Libyan coast, a feasibility study, J. Mech. Eng. Res. Dev. 44 (2021) 236–252.
- [9] Y.F. Nassar, H.J. El-khozondar, G. Ghaboun, M. Khaleel, Z. Yusupov, Abdussalam Ahmed; Abdulgader Alsharif, Solar and Wind Atlas for Libya, Int. J. Electr. Eng. Sustain. 1 (2023) 27–43. https://ijees.org/index.php/ijees/index.
- [10] A. Ghayth, Z. Yusupov, M. Khaleel, Performance Enhancement of PV Array Utilizing Perturb & Observe Algorithm, Int. J. Electr. Eng. Sustain. 1 (2023) 29–37.
- [11] M. Abdunnabi, I. Rohuma, E. Endya, E. Belal, Review on solar water heating in Libya, Sol. Energy Sustain. Dev. J. 7 (2021). https://doi.org/10.51646/jsesd.v7i3.76.
- [12] B. Belgasim, Y. Aldali, Review on Solar Thermal Electricity in Libya, Sol. Energy Sustain. Dev. J. 7 (2021). https://doi.org/10.51646/jsesd.v7i3.78.
- [13] S.M. Abdulwahab, Y.F. Nassar, H.J. El-khozondar, M. Khaleel, A. Abdussalam, International Journal of Electrical Engineering Meeting Solar Energy Demands : Significance of Transposition Models for Solar Irradiance , Int. J. Electr. Eng. Sustain. 1 (2023) 90–105. https://ijees.org/index.php/ijees/article/view/52.
- [14] M. Elmnifi, M. Alshilmany, M. Abdraba, Potential of Municipal Solid Waste in Libya for Energy Utilization, Acta Mech. Malaysia. 2 (2019) 11–15. https://doi.org/10.26480/amm.01.2019.11.15.
- [15] M. Elmnifi, M. Amhamed, Future of Waste to Energy : Case study of Libya, Adv. Ind. Eng. Manag. (AIEM). 8 (2019) 1–4.
- [16] M.M. Muetaz Mohammed, S.B. Boghandora, R.H. Hassan, A.J. Jirhiman, A.A. Ali Ahmeedah, Influence of pH and the Insulation of Reactor on The Biogas Production of Livestock Waste by Batch Anaerobic Reactor, Sol. Energy Sustain. Dev. J. 11 (2022) 1–12. https://doi.org/10.51646/jsesd.v11i2.140.
- [17] M. Ashur, I. Bengharbia, Effect of Temperature and pH on Biogas Production From Organic Fraction-MSW, Sol. Energy Sustain. Dev. J. 4 (2015) 22–28. https://doi.org/10.51646/jsesd.v4i1.80.
- [18] Y. Nassar, I. Mangir, A. Hafez, H. El-Khozondar, M. Salem, H. Awad, Feasibility of innovative topography-based hybrid renewable electrical power system: A case study, Clean. Eng. Technol. 14 (2023) 100650. https://doi.org/10.1016/j.clet.2023.100650.
- [19] Y.F. Nassar, M.J. Abdunnabi, M.N. Sbeta, A.A. Hafez, K.A. Amer, A.Y. Ahmed, B. Belgasim, Dynamic analysis and sizing optimization of a pumped hydroelectric storage-integrated hybrid PV/Wind system: A case study, Energy Convers. Manag. 229 (2021) 113744. https://doi.org/10.1016/j.enconman.2020.113744.
- [20] N.A. Fadhil, M. Elmnifi, O.D.H. Abdulrazig, L.J. Habeeb, Design and modeling of hybrid photovoltaic micro-hydro power for Al-Bakur road lighting: A case study, Mater. Today Proc. 49 (2021) 2851–2857. https://doi.org/10.1016/j.matpr.2021.10.072.
- [21] IHA, Facts about hydropower, Int. Hydropower Assoc. (2021) 1–5.
- [22] Y.F. Nassar, H.J. El-Khozondar, N.M. Abouhmod, A.A. Abubaker, A.A. Ahmed, A. Alsharif, M.M. Khaleel, M. Elnaggar, R.J. El-Khozondar, Regression Model for Optimum Solar Collectors’ Tilt Angles in Libya, in: 8th Int. Eng. Conf. Renew. Energy Sustain. IeCRES 2023, IEEE, 2023: pp. 1–6. https://doi.org/10.1109/ieCRES57315.2023.10209547.
- [23] M. Khaleel, Z. Yusupov, N. Yasser, H.J. El-Khozondar, Enhancing Microgrid Performance through Hybrid Energy Storage System Integration: ANFIS and GA Approaches, Int. J. Electr. Eng. Sustain. . 1 (2023) 38–48. https://ijees.org/index.php/ijees/index.
- [24] A. Ahmed, O. Abd Al Aziz, Y. Nassar, Power management strategy and sizing optimization techniques for hybrid energy systems considering feature selection: mini review, North African J. Sci. Publ. 1 (2023) 38–48. https://najsp.com/index.php/home/article/view/55/41.
- [25] A.M. Elbreki, H. Moria, A.M. Ahmed, M. Elmnifi, A. Abdulmula, Optimization and Performance Evaluation of Hybrid Renewable System for Minimizing CO2 Emissions in Libya: A Case Study, Int. J. Renew. Energy Res. 10 (2020) 1725–1734. https://doi.org/10.20508/ijrer.v10i4.11265.g8065.
- [26] T. Uchiyama, S. Honda, T. Okayama, T. Degawa, A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine, Engineering. 2 (2016) 510–517. https://doi.org/10.1016/J.ENG.2016.04.007.
- [27] J.C. Radcliffe, The water energy nexus in Australia – The outcome of two crises, Water-Energy Nexus. 1 (2018) 66–85. https://doi.org/10.1016/j.wen.2018.07.003.
- [28] R.M. Llácer-Iglesias, P.A. López-Jiménez, M. Pérez-Sánchez, Hydropower technology for sustainable energy generation in wastewater systems: Learning from the experience, Water (Switzerland). 13 (2021) 3259. https://doi.org/10.3390/w13223259.
- [29] C. Power, A. McNabola, P. Coughlan, Development of an evaluation method for hydropower Energy recovery in wastewater treatment plants: Case studies in Ireland and the UK, Sustain. Energy Technol. Assessments. 7 (2014) 166–177. https://doi.org/10.1016/j.seta.2014.06.001.
- [30] Suez, As Samra wastewater treatment plant a major asset for Jordan, (2017).
- [31] B. BARAN, Usage of Waste Water Treatment Plants Hydroelectric Energy for Urban Lighting Energy: The Case of Turkey, Uluslararası Muhendis. Arastirma ve Gelistirme Derg. 13 (2021) 750–762. https://doi.org/10.29137/umagd.882607.
- [32] Gharyan, https://en.wikipedia.org/wiki/Gharyan, (n.d.).
- [33] H. Al-Najjar, C. Pfeifer, R. Al Afif, H.J. El-Khozondar, Estimated view of renewable resources as a sustainable electrical energy source, case study, Designs. 4 (2020) 1–18. https://doi.org/10.3390/designs4030032.
- [34] D. Van Der Horst, S. Martinat, J. Navratil, P. Dvorak, P. Chmielova, What can the location of biogas plants tell us about agricultural change? A case study from the Czech Republic, Deturope. 10 (2018) 33–52. https://doi.org/10.32725/det.2018.002.
- [35] A. Pertiwiningrum, M.A. Wuri, A.W. Harto, R. Budiarto, M. Gozan, Heating value enhancement by biogas purification using natural zeolite and rice straw-based biochar, Int. J. GEOMATE. 16 (2019) 80–85. https://doi.org/10.21660/2019.55.4715.
- [36] E. Dekam, S. Alghoul, Fluid mechanics-fundamentals and applications, Noor publishing Company, Germany, 2018.
- [37] Y.F. Nassar, S.Y. Alsadi, H.J. El-Khozondar, M.S. Ismail, M. Al-Maghalseh, T. Khatib, J.A. Sa’ed, M.H. Mushtaha, T. Djerafi, Design of an isolated renewable hybrid energy system: a case study, Mater. Renew. Sustain. Energy. 11 (2022) 225–240. https://doi.org/10.1007/s40243-022-00216-1.
- [38] M. Abdunnabi, N. Etiab, Y.F. Nassar, H.J. El-Khozondar, R. Khargotra, Energy savings strategy for the residential sector in Libya and its impacts on the global environment and the nation economy, Adv. Build. Energy Res. 17 (2023) 379–411. https://doi.org/10.1080/17512549.2023.2209094.
- [39] L. Jarrar, O. Ayadi, J. Al Asfar, Techno-economic aspects of electricity generation from a farm based biogas plant, J. Sustain. Dev. Energy, Water Environ. Syst. 8 (2020) 476–492. https://doi.org/10.13044/j.sdewes.d7.0302.
- [40] H.J. El-Khozondar, F. El-batta, R.J. El-Khozondar, Y. Nassar, M. Alramlawi, S. Alsadi, Standalone hybrid PV/wind/diesel-electric generator system for a COVID-19 quarantine center, Environ. Prog. Sustain. Energy. 42 (2022). https://doi.org/10.1002/ep.14049.
- [41] Y.F. Nassar, S.Y. Alsadi, Assessment of solar energy potential in Gaza Strip-Palestine, Sustain. Energy Technol. Assessments. 31 (2019) 318–328. https://doi.org/10.1016/j.seta.2018.12.010.
- [42] Y.F. Nassar, M.A. Salem, K.R. Iessa, I.M. AlShareef, K.A. Ali, M.A. Fakher, Estimation of CO2 emission factor for the energy industry sector in libya: a case study, Environ. Dev. Sustain. 23 (2021) 13998–14026. https://doi.org/10.1007/s10668-021-01248-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a731cd7b-906c-49e0-9e8f-499482ceb457