PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity of Hydrocharis morsus-ranae L. to selected metals and its suitability for phytoremediation of waters contaminated with metals. A mesocosm study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anthropogenic pollution leads to increased concentrations of metals in the freshwater and macrophyte. Aquatic plants substantially contribute to the structure, function as well as and service provision of aquatic ecosystems. Our microcosm experiments were to test the possibility of the physiological response of Hydrocharis morsus-ranae to metal (Cd, Pb, Cu, Zn, Mn, Fe at three level of concentration) contaminated waters. Biomass was analysed at the beginning and at the end of the experiment. At the same time contents of photosynthetic pigments in leaves were estimated spectrophotometrically. We found that this macrophyte had the ability to grow in contaminated waters, but the effects of high concentration of isolated metals in water will indicate changes consisting in the disappearance of a significant part of biological populations were which manifested in alteration of the content of photosynthetic pigments as well as this plant’s growth. We show that generally stress of Zn and Cu influenced the drop of dry biomass which was connected with a positive correlation between the amount of dry biomass and the content of chlorophyll a and carotenoids, or only carotenoids, respectively. The highest stress of Pb and Fe (third concentrations of these metals) also influenced the drop of biomass. We concluded that none of Cd concentrations were toxic to this plant, but the effect of Mn stress was not unequivocal. Moreover, plant growth was stimulated by low Fe concentrations (first concentration) demonstrating the hormesis effect. When plants were exposed to this metal, there was no evidence of damage to the photosynthetic processes.
Wydawca
Rocznik
Tom
Strony
67--77
Opis fizyczny
Bibliogr. 72 poz., tab., wykr.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, al. Piastów 17, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, al. Piastów 17, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, al. Piastów 17, 70-310 Szczecin, Poland
Bibliografia
  • ARIF N., YADAV V., SINGH S., SINGH S., AHMAD P., MISHRA R.K., ..., CHAUHAN D.K. 2016. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers of Environmental Science & Engineering. Vol. 4, 69. DOI 10.3389/fenvs.2016.00069.
  • ARNON D.J., ALLEN M.B., WHATLEY F. 1956. Photosynthesis by isolated chloroplast. IV. General concept and comparison of three photochemical reactions. Biochimica et Biophysica Acta. Vol. 20 p. 449–461. DOI 10.1016/0006-3002(56)90339-0.
  • CATLING P.M., MITROW G., HEBER E., POSLUSZNY U., CHARLTON W.A. 2003. The biology of Canadian weeds. 124. Hydrocharis morsus–ranae L. [online]. Canadian Journal of Plant Science. Vol. 83(4) p. 1001–1016. [Access 10.01.2022]. Available at: https://cdnscien-cepub.com/doi/pdf/10.4141/P02-033
  • DATTA S., SINHA D., CHAUDHARY V., KAR S., SINGH A. 2022. Water pollution of wetlands: A global threat to inland, wetland, and aquatic phytodiversity. In: Handbook of research on monitoring and evaluating the ecological health of wetlands. Ed. A.K. Rathoure. Hershey. IGI Global p. 27–50.
  • DHIR B., SHARMILA P., SARADHI P.P. 2009. Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology. Vol. 39 p. 754–781. DOI 10.1080/10643380801977776.
  • Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. OJ L 327, 22.12.2000 pp. 73.
  • DOGAN M., SAYGIDEGER S.D., COLAK U. 2009. Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bulletin of Environmental Contamination and Toxicology. Vol. 83 p. 249–254. DOI 10.1007/s00128-009-9733-5.
  • DOGANLAR Z.B., CAKMAK S., YANIK T. 2012. Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. International Journal of Biology. Vol. 4 p. 148–157.
  • EFREMOV A.N., GRISHINA V.S., TOMA C., MESTERHÁZY A., TCHATCHOUANG E.N. 2021. Comparative morphology of the genus Hydrocharis L. (Hydrocharitaceae). Inland Water Biology. Vol. 14(6) p. 638–651. DOI 10.1134/S1995082921060031.
  • ENGIN M.S., UYANIK A., KUTBAY H.G. 2015. Accumulation of heavy metals in water, sediments and wetland plants of Kizilirmak Delta (Samsun, Turkey). International Journal of Phytoremediation. Vol. 17(1–6) p. 66–75. DOI 10.1080/15226514.2013.828019.
  • GAŁCZYŃSKA M. 2012. Reakcja przęstki pospolitej (Hippuris vulgaris L.) i żabiścieku pływającego (Hydrocharis morsus-ranae L.) na zanieczyszczenie wody wybranymi metalami ciężkimi i możliwości wykorzystania tych roślin w fitoremediacji wód [The response of Common Mare’s Tail (Hippuris vulgaris L.) and Common Frogbit (Hydrocharis morsusranae L.) to the pollution of water with selected heavy metals, and the possibility to use this plant in phytoremediation of water]. Szczecin. Wydaw. ZUT w Szczecinie. ISBN 978-83-7663-137-0 pp. 138.
  • GAŁCZYŃSKA M., BEDNARZ K. 2012. Influence of water contamination on the accumulation of some metals in Hydrocharis morsus-ranae L. Journal of Elementology. Vol. 1 p. 31–41. DOI 10.5601/jelem.2012.17.1.03.
  • GUPTA S.K., RAI A.K., KANWAR S.S., SHARMA T.R. 2012. Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS ONE. Vol. 7(8), e42578. DOI 10.1371/journal.pone.0042578.
  • HAGER A., MAYER-BERTHENRATH T. 1966. Die Isolierung und quantitaive Bestimung der Carotenoide und Chlorophyll von Blatern, Algen und isolierten Chloroplasten mit Hilfe dunnschicht Chromatographischermethoden [The isolation and quantitative determination of carotenoids and chlorophyll from leaves, algae and isolated chloroplasts using thin-layer chromatographic methods]. Planta. Vol. 69(3) p. 198–217. DOI 10.2307/23366270.
  • HAMMAD D.M. 2011. Cu, Ni and Zn phytoremediation and translocation by water hyacinth plant at different aquatic environments. Australian Journal of Basic and Applied Sciences. Vol. 5 p. 11–22.
  • HANSEN S.E., CAHILL B.C., HACKETT R.A., MONFILS M.J., GOEBEL R.T., ASENCIO S., MONFILS A. 2022. Aggregated occurrence records of invasive European frog-bit (Hydrocharis morsus-ranae L.) across North America. Biodiversity Data Journal. Vol. 10, e77492. DOI 10.3897/BDJ.10.e77492.
  • HARGUINTEGUY C.A., SCHREIBER R., PIGNATA M.L. 2013. Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecological Indicators. Vol. 27 p. 8–16. DOI 10.1016/j.ecolind.2012.11.018.
  • JOHN R., AHMAD P., GADGIL K., SHARMA S. 2008. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil and Environment. Vol. 54 (6) p. 262–270.
  • KAMAL M., GHALYA A.E., MAHMOUDA N., COTE R. 2004. Phytoaccumulation of heavy metals by aquatic plants. Environment International. Vol. 29 p. 1029–1039. DOI 10.1016/S0160-4120(03)00091-6.
  • KHELLAF N., ZERDAOUI M. 2010. Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation. Ecotoxicology. Vol. 19 p. 1363–1368.
  • KLECKEROVA A., SOBROVA P., KRYSTOFOVA O., SOCHOR J., ZITKA O., BABULA P., ... KIZEK R. 2011. Cadmium(II) and zinc(II) ions effects on maize plants revealed by spectroscopy and electrochemistry. International Journal of Electrochemical Science. Vol. 6(12) p. 6011–6031.
  • KUMAR A., PRASAD M.N.V., SYTAR O. 2012. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere. Vol. 89 p. 1056–1065. DOI 10.1016/j.chemosphere.2012.05.070.
  • LAHIVE E., MICHAEL J., O’CALLAGHAN A., MARCEL A., JANSEN K., O’HALLORAN J. 2011. Uptake and partinioning of zinc in Lemnaceae. Ecotoxilogy. Vol. 20 p. 1992–2002. DOI 10.1007/s10646-011-0741-y.
  • LICHTENTHALER H.K., WELLBURN A.R. 1983. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions. Vol. 11 p. 591–592. DOI 10.1042/bst0110591.
  • LIZIERI C., KUKI K.N., AGUIAR R. 2012. The morphophysiological responses of free-floating aquatic macrophytes to a supra-optimal supply of manganese. Water, Air, & Soil Pollution. Vol. 223(5) p. 2807–2820. DOI 10.1007/s11270-011-1068-2.
  • MAL T.K., ADORJAN P., CORBETT A.L. 2002. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environmental Pollution. Vol. 120 p. 307–311. DOI 10.1016/S0269-7491(02)00146-X.
  • MALEC P., MALEVA M., PRASAD M.N.V., STRZAŁKA K. 2009. Copper toxicity in leaves of Elodea canadensis Michx. Bulletin of Environmental Contamination and Toxicology. Vol. 82 p. 627–632. DOI 10.1007/ s00128-009-9650-7.
  • MALEC P., MALEVA M.G., PRASAD M.N.V., STRZAŁKA K. 2010. Responses of Lemna trisulca L. (Duckweed) exposed to low doses of cadmium: thiols, metal binding complexes, and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma. Vol. 240(1–4) p. 69–74. DOI 10.1007/s00709-009-0091-2.
  • MALEC P., MYSLIWA-KURDZIEL B., PRASAD M.N.V., WALOSZEK A., STRZAŁKA K. 2011. Role of aquatic macrophytes in biogeochemical cycling of heavy metals, relevance to soil-sediment continuum detoxification and ecosystem health. In: Detoxification of heavy metals. Eds. I. Sherameti, A. Varma. Soil Biology. Vol. 30. Berlin–Heidelberg. Springer p. 345–368.
  • MALEVA M.G., NEKRASOVA G.F., BEZEL V.S. 2004. The response of hydrophytes to environmental pollution with heavy metals. Russian Journal of Ecology. Vol. 35(4) p. 230–235.
  • MANIOS T., STENTIFOR E.I., MILLNER P.A. 2003. The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous water. Ecological Engineering. Vol. 20 p. 65–74. DOI 10.1016/S0925-8574(03)00004-1.
  • MARTINEZ-HARO M., BEIRAS R., BELLAS J., CAPELA R., COELHO J.P., LOPES I., ..., MARQUES J.C. 2015. A review on the ecological quality status assessment in aquatic systems using community based indicators and ecotoxicological tools: what might be the added value of their combination? Ecological Indicators. Vol. 48 p. 8–16.
  • MEGATELI S., SEMSARI S., COUDERCHET M. 2009. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicology and Environmental Safety. Vol. 72(6) p. 1774–1780. DOI 10.1016/j.ecoenv.2009.05.004.
  • MILLALEO R., REYES-DÍAZ M., IVANOV A.G., MORA M. L., ALBERDI M. 2010. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition. Vol. 10(4) p. 476–494. DOI 10.4067/S0718-95162010000200008.
  • MOHAMMED D.A. 2016. Comparative study of the toxicity and phyto-extraction capacity of L. minor and L. gibba in polluted water by cadmium. International Journal of Plant, Animal and Environmental Sciences. Vol. 6(3) p. 6–17. DOI 10.1080/15226514.1058331.
  • MOORE J.W. 1991. Inorganic contaminants of surface water: Research and monitoring priorities. 1st ed. New York. Springer Verl. ISBN 1461277558 pp. 344.
  • MYŚLIWA-KURDZIEL B., STRZAŁKA K. 2002. Influence of metals on the biosynthesis of photosynthetic pigments. In: Physiology and biochemistry of metal toxicity and tolerance in plants. Eds. M.N. V. Prasad, K. Strzałka. Dordrecht. Kluwer Academic p. 201–228.
  • NAGAJYOTI P.C., LEE K.D., SREEKANTH T.V.M. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters. Vol. 8(3) p. 199–216. DOI 10.1007/s10311-010-0297-8.
  • NEWETE S.W, ERASMUS B.F.N., WEIERSBYE I.M., BYRNE M.J. 2016. Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes). Environmental Science and Pollution Research. Vol. 23 p. 20805–20818. DOI 10.1007/s11356-016-7292-y.
  • ODJEGBA V.J., FASIDI I.O. 2004. Accumulation of trace elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology. Vol. 13 p. 637–646.
  • PN–82/C-04576/08 (1982). Woda i ścieki. Badania zawartości związków azotu. Oznaczanie azotu azotanowego metodą kolorymetryczną salicylanem sodowym [Water and sewage. Tests for nitrogen compounds. Determination of nitrate nitrogen by colorimetric method with sodium salicylate].
  • PN-89/C-04537/02 (1989). Woda i ścieki. Badania zawartości związków fosforu. Oznaczenie rozpuszczonych ortofosforanów kolorymetryczną metodą molibdenianową z chlorkiem cynowym jako reduktorem [Water and sewage. Tests for phosphorus compounds. Determintion of dissolved orthophosphates with the colorimetric molybdate method using tin(II) chloride as a reducing agent].
  • PN-ISO 7150-1 (2002). Oznaczenie azotu amonowego. Manualna metoda spektrometryczna. [Determination of ammonium nitrate. A manual spectrophotometric method].
  • POLECHOŃSKA L., DAMBIEC M. 2014. Heavy metal accumulation in leaves of Hydrocharis morsus-ranae L. and biomonitoring applications. Civil and Environmental Engineering Reports. Vol. 12(1) p. 95–105. DOI 10.2478/ceer-2014-0009.
  • POLECHOŃSKA L., SAMECKA-CYMERMAN A. 2015. The effect of environmental contamination on the decomposition of European frogbit (Hydrocharis morsus-ranae L.) in natural conditions. Aquatic Botany. Vol. 127 p. 35–43. DOI 10.1016/j.aquabot.2015.07.006.
  • POLECHOŃSKA L., SAMECKA-CYMERMAN A. 2016. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution. Environmental Science and Pollution Research. Vol. 23(4) p. 3469-3480. DOI 10.1007/s11356-015-5550-z.
  • POLECHOŃSKA L., SAMECKA-CYMERMAN A., DAMBIEC M. 2017. Changes in growth rate and macroelement and trace element accumulation in Hydrocharis morsus-ranae L. during the growing season in relation to environmental contamination. Environmental Science and Pollution Research. Vol. 24(6) p. 5439–5451. DOI 10.1007/s11356-016-8258-9.
  • POSCHENRIEDER C., CABOT C., MARTOS S., GALLEGO B., B ARCELÓ J. 2013. Do toxic ions induce hormesis in plants? Plant Science. Vol. 212 p. 15–25. DOI 10.1016/j.plantsci.2013.07.012.
  • POURRUT B., SHAHID M., DUMAT C., WINTERTON P., PINELLI E. 2011. Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology. Vol. 213 p. 113–136. DOI 10.1007/978-1-4419-9860-6_4.
  • PRASAD M., MALEC P., WALOSZEK A., BOJKO M., STRZAŁKA K. 2001. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science. Vol. 161 p. 881–889. DOI 10.1016/S0168-9452(01)00478-2.
  • QIAO X., SHI G., ZHENG Z., HUANG M., YANG H. 2014. Photochemical performance of thylakoid membrane in lead-treated Nymphoides peltatum. Bulletin of Environmental Contamination and Toxicology. Vol. 93, 251. DOI 10.1007/s00128-014-1300-z.
  • ROUT G., DAS P. 2003. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie. Vol. 23(1) p. 3–11. DOI 10.1051/agro:2002073.
  • ROUT G.R., SAHOO S. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science. Vol. 3 p. 1–24. Vol. DOI 10.7831/ras.3.1.
  • Rozporządzenie Ministra Środowiska z dnia 11 lutego 2004 r. w sprawie klasyfikacji dla prezentowania stanu wód powierzchniowych i podziemnych, sposobu prowadzenia monitoringu oraz sposobu interpretacji wyników i prezentacji stanu tych wód [Regulation of the Minister of Environment of 11 February, 2004 on the classification for presentation of surface waters and groundwater state, their monitoring and interpretation of results, and presentation of the state of these waters]. Dz.U. 2004. Nr 32, poz. 284.
  • Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych [Regulation of the Minister of the Environment of July 21, 2016 on the method of classification of the state of surface water bodies and environmental quality standards for priority substances]. Dz.U. 2016 poz. 1187.
  • SAGARDOY R., MORALES F., LÓPEZ-MILLÁN A-F., ABADÍA A., ABADÍA J. 2009. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biology. Vol. 11(3) p. 339–350. DOI 10.1111/j.1438-8677.2008.00153.x.
  • SAMARDAKIEWICZ S., WOŹNY A. 2005. Cell division in Lemna minor roots treated with lead. Aquatic Botany. Vol. 83 p. 289–295. DOI 10.1016/j.aquabot.2005.06.007.
  • SENGAR R.S., GAUTAM M., SENGAR , R.S., GARG S.K., SENGAR K., CHAUDHARY R. 2008. Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology. Vol. 196 p. 73–93. DOI 10.1007/978-0-387-78444-1_3.
  • SHIRYAEV G.I., BORISOVA G.G., SHCHUKINA D.A., CHUKINA N.V., SOBENIN A.V., MALEVA M.G. 2021. Redox reactions in Hydrocharis morsus-ranae L. under industrial impacts. Journal of Siberian Federal University. Biology. Vol. 14(3) p. 296–305. DOI 10.17516/1997-1389-0352.
  • SINGH R., TRIPATHI R.D., DWIVEDI S., KUMAR A., TRIVEDI P.K., CHAKRABARTY D. 2010. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technology. Vol. 101 p. 3025–3032. DOI 10.1016/j.biortech. 2009.12.031.
  • SKWIERAWSKI A., SKWIERAWSKA M. 2013. The role of Hydrocharitetum morsus-ranae in shaping the chemical composition of surface waters. Polish Journal of Environmental Studies. No. 22(6) p. 1825–183.
  • SZCZERBIŃSKA N., GAŁCZYŃSKA M. 2015. Biological methods used to assess surface water quality. Archives of Polish Fishers. Vol. 23 p. 185–196. DOI 10.1515/aopf-2015-0021.
  • VESELÝ T., NEUBERG M., TRAKAL L., SZÁKOVÁ J., TLUSTOŠ P. 2012. Water lettuce Pistia stratiotes L. response to lead toxicity. Water, Air, & Soil Pollution. Vol. 223 p. 847–1859. DOI 10.1007/s11270-011-0989-0.
  • XING W., LIU G. 2011. Iron biogeochemistry and its environmental impacts in freshwater lakes. Fresenius Environmental Bulletin. Vol. 20(6) p. 1339–1345.
  • XING W., HUANG W.M., LIU G.H. 2009. Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid. Environmental Toxicology. Vol. 25 p. 103–112. DOI 10.1002/tox.20480.
  • YE Z.H., BAKER A.J.M., WONG M.H., WILLIS A.J. 1997. Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytologist. Vol. 136 p. 469–480.
  • YILMAZ D.D., URUÇ-PARLAK K., VURAL C. 2012. Response of antioxidant defenses to Zn stress in three duckweed species. Ecotoxicology and Environmental Safety. Vol. 85 p. 52–58. DOI 10.1016/j.ecoenv.2012.08.023.
  • YRUELA I. 1999. Copper in plants: acquisition, transport and interactions. Functional Plant Biology. Vol. 36(5) p. 409–430. DOI 10.1071/FP08288.
  • YRUELA I. 2005. Copper in plants. Brazilian Journal of Plant Physiology. Vol. 17 p. 145–156. DOI 10.1590/S1677-04202005000100012.
  • ZAHOOR A., AHMAD F., HAMEED M., BASRA S.M.A. 2018. Structural and functional aspects of photosynthetic response in Eichhornia crassipes (Mart.) solms under cadmium stress. Pakistan Journal of Botany. Vol. 50(2) p. 489–493.
  • ZEYNEP B.D. 2013. Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba, L. minor and Spirodela polyrhiza. Chemical Speciation & Bioavailability. Vol. 2 (2) p. 79–88. DOI 10.3184/095422913X13706128469701.
  • ZHU B., OTTAVIANI C.C., NADDAFI R., DAI Z., DU D. 2018. Invasive European frogbit (Hydrocharis morsus-ranae L.) in North America: An updated review 2003–16. Journal of Plant Ecology. Vol. 11(1) p. 17–25.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a728a37e-459a-48d4-bc44-3fb171abc0ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.