PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural mechanic material damping in fabric reinforced composites: a review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: A review regarding the acting mechanisms of structural dynamic material damping in fabric reinforced composites is presented. Design/methodology/approach: Mechanical acting principles identified by different investigations are considered. Aspects of the determination and calculation of structural mechanical material properties of fabric reinforced composites are described. Approaches intending the description and classification of ondulations in fabrics reinforced single layers are demonstrated. Findings: The mesomechanic geometry of fabrics is not considered sufficiently by relatively simple homogenization approaches. Yet, it significantly affects its structural dynamic material properties, especially the dynamic ones. Research limitations/implications: In each case the different damping mechanisms act coupled and occur at the same time. Therefore a separation procedure is required in any case. Practical implications: Against the background of the comparison and remarks of the presented papers a reasonable further procedure is recommended. Thereby, FE-calculations with a parametrical variation of the mesomechanic geometry in order to identify kinematic correlations due to geometric constraints are suggested. Originality/value: The idea of the representation of the geometric conditions in terms of a degree of ondulation is described. Such a non-dimensional specific value representing the intensity of the ondulation would enable the comparability of the results of different kinds of investigations.
Rocznik
Strony
12--41
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
autor
  • Laboratory of Composite Technology (LFT), Department of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg, Galgenbergstrasse 30, 93053 Regensburg, Germany
autor
  • Laboratory of Composite Technology (LFT), Department of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg, Galgenbergstrasse 30, 93053 Regensburg, Germany
autor
  • Department of Civil Engineering and Environmental Sciences, Institute of Engineering Mechanics and Structural Analysis, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
Bibliografia
  • [1] M. Ansar, W. Xinwei, Z. Chouwei, Modeling strategies of 3D woven composites - A review, Composite Structures 93 (2011) 1947-1963.
  • [2] P. Badel, E. Vidal-Salle, P. Boisse, Computational determination of in-plane shear mechanic behaviour of textile composite reinforcements, Computational Material Science 40 (2007) 439-448.
  • [3] D. Ballhause, Diskrete Modellierung des Verformungs- und Versagensverhaltens von Gewebemembranen, Dissertation, Universität Stuttgart, Stuttgart, 2007.
  • [4] E.J. Barbero, J. Trovillion, J.A. Mayugo, K.K. Sikkil, Finite Element Modeling of Plain Weave Fabrics from Photomicrograph Measurements, Composite Structures 73/1 (2006) 41-52.
  • [5] E.J. Barbero, R. Luciano, Micromechanics Formulas for the Relaxation Tensor of linear Viscoelastic Composites with Transversely Isotropic Fibers, International Journal of Solid Structures 32 (1995) 1859-1872.
  • [6] E.C. Botelho, A.N. Campos, E. de Barros, L.C. Pardini, M.C. Rezende, Damping behavior of continuous fiber/metal composite materials by the free vibration method, Composites B 37 (2006) 255-263.
  • [7] S. Buchanan, A. Grigorash, J.P. Quinn, A.T. Mclllhagger, C. Young, Modeling the geometry of the repeat unit cell of three-dimensional weave architectures, Journal of the Textile Institute 101/7 (2010) 679-685.
  • [8] F. Büsching, Combined Dispersion and Refection Effects at Sloping Structures, Proceedings of the International Conference on Port and Marine R&D and Technology, ICPMRDT, Vol. I, Singapore, 2001, 410-418.
  • [9] J.-H. Byun, The analytical characterization of 2-D braided textile composites, Composites Science and Technology 60/5 (2000) 705-716. [10] R. Chandra, S.P. Singh, K. Gupta, A study of damping in fiber-reinforced composites, Journal of Sound and Vibration 262/3 (2003) 475-496.
  • [11] R. Chandra, S.P. Singh, K. Gupta, Damping studies in fiber-reinforced composites - a review, Composite Structures 46/1 (1999) 41-51.
  • [12] T.-W. Chou, M. Ito, An Analytical and Experimental Study of Strength and Failure Behavior of Plain Weave Composites, Journal of Composite Materials 32 (1998) 2-30.
  • [13] A. El Mahi, M. Assarar, Y. Sefrani, J.-M. Berthelot, Damping analysis of orthotropic composite materials and laminates, Composites B 39 (2008) 1069-1076. [14] I.C. Finegan, R. F. Gibson, Recent research on enhancement of damping in polymer composites, Composite Structures 44 (1999) 89-98. [15] R.F. Gibson, Modal vibration response measurements for characterization of composite materials and structures, Composites Science and Technology 60 (2000) 2769-2780.
  • [16] H. Guan, Micromechanical analysis of viscoelastic damping in woven fabric-reinforced polymer matrix composites, PhD-Thesis, Wayne State University, Detroit, Michigan, 1997, Paper AAI9725829, http ://digitalcommons. wayne. edu/dissertations/AAI97 25829.
  • [17] H. Guan, R.F. Gibson, Micromechanic Models for Damping in Woven Fabric-Reinforced Polymer Matrix Composites, Journal of Composite Materials 35/16 (2001) 1417-1434.
  • [18] H. Hanselka, Ein Beitrag zur Charakterisierung des Dämpfungsverhaltens polymerer Faserverbundwerkstoffe, Dissertation, Technische Universität Clausthal, 1992 (in German).
  • [19] G. Hivet, A.V. Duong, A contribution to the analysis of the intrinsic shear behavior of fabrics, Journal of Composite Materials 45/6 (2010) 695-716.
  • [20] G. Hivet, P. Boisse, Consistent mesoscopic mechanical behavior model for woven composite reinforcements in biaxial tension, Composites B: Engineering 39 (2008) 345-361.
  • [21] U. Hoffmann, Zur Optimierung der Werkstoff damp fung anisotroper polymerer Hochleistungs-Faserverbundstrukturen, Dissertation, Technische Universität Clausthal, 1992 (in German).
  • [22] Z.M. Huang, The mechanical properties of composites reinforced with woven and braided fabrics, Composites Science and Technology 60/4 (2000) 479-498.
  • [23] S.J. Hwang, R.F. Gibson, The Use of Strain Energy-Based Finite Element Techniques in the Analysis of Various Aspects of Damping of Composite Materials and Structures, Journal of Composite Materials 26/17 (1992) 2585-2605.
  • [24] T. Ishikawa, T.-W. Chou, One-Dimensional Micro-mechanical Analysis of Woven Fabric Composites, AIAA Journal 21/12 (1983) 1714-1721.
  • [25] F. Kadioglu, Measurement of Dynamic Properties of Composite in Vibration by Means of a Non-contatct Mechanism, Journal of Reinforced Plastics and Composites 28/12 (2009) 1459-1466.
  • [26] K. Kehl, Verfahren zur Bestimmung des Dämpfungsverhaltens anisotroper Verbundbauteile aus den Eigenschaften der Laminatkomponenten, Dissertation, Technische Universität Berlin, 1978 (in German).
  • [27] J.L. Klug, Untersuchungen zum Dämpfungsverhalten von glasfaserverstärkten Kunststoffen. Dissertation, Rheinisch-Westfälische Technische Hochschule (RWTH), Institut für Leichtbau, Aachen, 1977 (in German).
  • [28] J. Kreikmeier, D. Chrupalla, I.A. Khattab, D. Krause, Experimentelle und numerische Untersuchungen von CFK mit herstellungsbedingten Fehlstellen, Proceedings of the 10. Magdeburger Maschinenbau-Tage, Magdeburg, 2011 (in German).
  • [29] P. Kumar, R. Chandra, S.P. Singh, Interphase Effect on Damping in Fiber Reinforced Composites, ICCES 4/4 (2007) 67-72.
  • [30] B.H. Le Page, F.J. Guild, S.L. Ogin; P.A. Smith, Finite element simulation of woven fabric composites. Composites A 35/7-8 (2004) 861-872, doi: 10.1016/j. compositesa.2004.01.017.
  • [31] T. Matsuda, Y. Nimiya, N. Ohno, M. Tokuda, Elastic -viscoplastic behavior of plain-woven GFRP laminates: Homogenization using a reduced domain of analysis, Composite Structures 79 (2007) 493-500.
  • [32] T. Matsuda, N. Ohno, H. Tanaka, T. Shimizu, Homogenized In-Plane Elastic-Viscoplastic Behavior of Long Fiber-Reinforced Laminates, JSME International Journal Series A: Solid Mechanics and Material Engineering 45 (2002) 538-544.
  • [33] S.K Mital, L.N. Murthy, C.C. Chamis, Simplified Micromechanics of Plain Weave Composites, NASA Technical Memorandum 107165, March, 1996, 1-12.
  • [34] S. Mistou, M. Karama, Determination of the Elastic Properties of Composite Materials by Tensile Testing and Ultrasound Measurement, Journal of Composite Materials 34/20 (2000) 1696-1709.
  • [35] K. Moser, Faser-Kunststoff-Verbund - Entwurfs- und Berechnungsgrundlagen, VDI-Verlag, Düsseldorf, 1992 (in German).
  • [36] M. Motavalli, P. Flüeler, Characterization of unidirectional carbon fibre reinforced plastic laminates, Materials and Structures/Materiaux et Constructions 31 (1998) 178-180.
  • [37] DIN 53440: Kunststoffe - Bestimmung dynamisch-mechanischer Eigenschaften - Teil 1: Prüfung von Kunststoffen und von schwingungsgedämpften geschichteten Systemen; Biegeschwingungsversuch; Allgemeine Grundlagen zur Bestimmung der dynamisch-elastischen Eigenschaften stab- oder streifenförmiger Probekörper (Testing of plastics and damped laminated systems; bending vibration test; general rudiments of dynamic elastic properties of bars and strips), Normenausschuss Kunststoffe (FNK) im DIN Deutsches Institut für Normung e. V./Normenausschuss Materialprüfung (NMP) im DIN, Beuth Verlag, Berlin, 1984 (in German).
  • [38] DIN EN 2564: Luft- und Raumfahrt - Kunststoffaser-Laminate - Bestimmung der Faser-, Harz- und Porenanteile (Aerospace series - Carbon fibre laminates - Determination of the fibre-, resin- and void contents), Normenstelle Luftfahrt (NL) im DIN Deutsches Institut für Normung e.V., Beuth Verlag, Berlin, 1997 (in German).
  • [39] DIN EN ISO 1172: Textilglasverstärkte Kunststoffe -Prepregs, Formmassen und Laminate - Bestimmung des Textilglas- und Mineralfüllstoffgehalts; Kalzinierungsverfahren (Textile-glass-reinforced plastics - Prepregs, moulding compounds and laminates - Determination of the textile-glass and mineral-filler content; calcination methods), Normenausschuss Kunststoffe (FNK) im DIN Deutsches Institut für Normung e.V., Normenstelle Luftfahrt (NL) im DIN, Beuth-Verlag, Berlin, 1998 (in German).
  • [40] DIN EN ISO 6721: Kunststoffe - Bestimmung dynamisch-mechanischer Eigenschaften - Teil 3: Biegeschwingung Resonanzkurvenverfahren (Plastics - Determination of dynamic mechanical properties -Part 3: Flexural vibration; resonance-curve), Normenausschuss Kunststoffe (FNK) im DIN Deutsches Institut für Normung e. V/Normenausschuß Materialprüfung (NMP) im DIN, Beuth Verlag, Berlin, 1996 (in German).
  • [41] N.K. Naik, P.S. Shembekar, Elastic Behavior of Woven Fabric Composites: I-Lamina Analysis, Journal of Composite Materials 26/15 (1992) 2196-2225, doi: 10.1177/002199839202601502.
  • [42] Y. Nakanishi, K. Matsumoto, M. Zako, Y. Yamada, Finite element analysis of vibration damping for woven fabric composites, Key Engineering Materials 334-335 (2007) 213-216.
  • [43] P. Ottawa, M. Romano, M. Wagner, I. Ehrlich, N. Gebbeken, The influence of ondulation in fabric reinforced composites on dynamic properties in a mesoscopic scale in composites reinforced with fabrics on the damping behaviour, Proceedings of the 11. LS- DYNA Forum, Ulm, 2012, 171-172, http://www.dynamore.de/de/download/papers/ls-dyna-forum-2012.
  • [44] CM. Pastore, YA. Gowayed, A Self-Consistent Fabric Geometry Model: Modification and Application of a Fabric Geometry Model to Predict the Elastic Properties of Textile Composites, Journal of Composites Technology and Research 16/1 (1994) 32-36, http://www.astm.org/DIGITAL_LIBRARY/JOURNA LS/COMPTECH/PAGES/CTR10392J.htm.
  • [45] C. Pongratz, M. Schlamp, B. Jungbauer, I. Ehrlich, Detection of Delamination Damages in Thin Composite Plates using Noncontact Measurement of Structural Dynamic Behavior, Proceedings of the 4th Annual International Conference on Industrial, Systems and Design Engineering, Athens, Greece, 2016, http://www.atiner.gr/industrial, in: P. Petratos, N. Mourtos, T. Trafalis, T. Attard, V. Sisiopiku, (Eds.), Athens Journal of Technology & Engineering 3/4 (2016) 315-331, http://www.athensjournals.gr/ajte.
  • [46] M. Romano, Charakterisierung von gewebeverstärkten Einzellagen aus kohlenstofffaserverstärktem Kunststoff (CFK) mit Hilfe einer mesomechanischen Kinematik sowie strukturdynamischen Versuchen. Dissertation, Universität der Bundeswehr München, Fakultät für Bauingenieurwesen und Umweltwissenschaften, Institut für Mechanik und Statik, Neubiberg, April 2016, urn:nbn:de:bvb:706-4684, http://athene-forschung.unibw.de/node?id=l 12760, http://athene-forschung.unibw.de/doc/112760/112760 .pdf http://athene-forschung.rz.unibw-muenchen.de /doc/112760/112760.pdf, in: I. Ehrlich, U. Briem, Schriftenreihe der OTH Regensburg, Shaker Verlag/OTH Regensburg, Aachen/Regensburg, 2017, doi:10.2370/9783844051773, DDC-Notation 620.192392 [DDC22ger], https://www.shaker.de/de/content/catalogue /index.asp?lang=de&ID=8&ISBN=978-3-8440-5177-3, http://d-nb.info/1130534081 (in German).
  • [47] M. Romano, I. Ehrlich, N. Gebbeken, Parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites: analytical and numerical investigations, Frattura ed Integrita Strutturale (Fracture and Structural Integrity) 11/39 (2017) 226-247, doi:10.3221/IGF-ESIS.39.22.
  • [48] M. Romano, M. Micklitz, F. Olbrich, R. Bierl, I. Ehrlich, N. Gebbeken, Experimental investigation of damping properties of unidirectionally and fabric reinforced plastics by the free decay method, Journal of Achievements in Materials and Manufacturing Engineering 63/2 (2014) 65-80.
  • [49] M. Romano, M. Micklitz, F. Olbrich, R. Bierl, I. Ehrlich, N. Gebbeken, Experimental investigation of damping properties of unidirectionally and fabric reinforced plastics by the free decay method, Proceedings of the 15* International Materials Symposium, IMSP'2014, Pamukkale University, Denizli, Turkey, 2014, 665-679, http://imsp.pau. edu.tr/IMSP2014_Proceedings_Final_security.pdf.
  • [50] A. Schmidt, L. Gaul, Experimental Determination and Modeling of Material Damping. Proceedings of the VDI-Tagung Schwingungsdämpfung, Wiesloch, 2007, 17-40.
  • [51] A. Schmidt, Finite-Elemente-Formulierungen viskoelastischer Werkstoffe mit fraktionalen Zeitableitungen, Dissertation, Universität Stuttgart, Institut für Angewandte und Experimentelle Mechanik, Stuttgart, 2003 (in German).
  • [52] A.B. Schultz, S.W. Tsai, Dynamic Moduli and Damping Ratios in Fiber-Reinforced Composites, Journal of Composite Materials 2/3 (1968) 368-379.
  • [53] A.B. Schultz, S.W. Tsai, Measurements of Complex Dynamic Moduli for Laminated Fiber-Reinforced Composites, Journal of Composite Materials 3 (1969) 434-443.
  • [54] K. Stellbrink, Micromechanics of Composites, Hanser-Verlag, München/Wien, 1996.
  • [55] CT. Sun, V.S. Rao, B.V. Sankar, Passive damping of prestressed composite structures, Acta Mechanica Solida Sinica (English Edition) 5/3 (1992) 286-299.
  • [56] P. Szablewski, Sinusoidal Model of Fiber-reinforced Plastic Composite, Journal of Industrial Textiles 38/4 (2009) 277-288, doi: 10.1177/1528083708098914.
  • [57] A. Tabiei, W. Yi, Comparative study of predictive methods for woven fabric composite elastic properties, Composite Structures 58/1 (2002) 149-164, doi:10.1016/S0263-8223(02)00028-4.
  • [58] Th.R. Tauchert, Internal Damping in a Fiber-Reinforced Composite Material, Journal of Composite Materials 8/2 (1974) 195-199.
  • [59] J.-L. Tsai, Y.-K. Chi, Effect of fiber array on damping behaviors of fiber composites, Composites B 39 (2008) 1196-1204.
  • [60] E.E. Ungar, E.M. Kervin, Loss Factors of Viscoelastic Systems in Terms of Strain Energy, Journal of the Acoustical Society of America 34/2 (1962) 954-958.
  • [61] P. Valentino, M. Romano, I. Ehrlich, F. Furgiuele, N. Gebbeken, Mechanical characterization of basalt fibre reinforced plastic with different fabric reinforcements - Tensile tests and FE-calculations with representative volume elements (RVEs), Proceedings of the Acta Fracturae - XXII Convegno Nazionale IGF (Italiano Gruppo Frattura), Roma, 2013, 231-244, http://www.gruppofrattura.it/ocs/index.php/cigf/IGF22 /paper/view/10914/10241.
  • [62] P. Valentino, E. Sgambitterra, F. Furgiuele, M. Romano, I. Ehrlich, N. Gebbeken, Mechanical characterization of basalt woven fabric composites: numerical and experimental investigation, Frattura ed Integrita Strutturale (Fracture and Structural Integrity) 8/28 (2014) 1-11, doi:10.3221/IGF-ESIS.28.01.
  • [63] J. Vantomme, A parametric study of material damping in fibre-reinforced plastics, Composites 26 (1995) 147-153.
  • [64] B. Wielage, T. Müller, T. Lampke, U. Richter, E. Kieselstein, G. Leonhardt, Simulation der elastischen Eigenschaften gewebeverstärkter Verbundwerkstoffe unter Berücksichtigung der Mikrostruktur, Proceedings of the 15th Symposium Verbundwerkstoffe und Werkstoffverbunde, Kassel, 2005, 441-446 (in German), http://www.dgm.de/download/tg/706/706_77.pdf.
  • [65] Z.J. Wu, Three-dimensional exact modeling of geometric and mechanical properties of woven composites, Acta Mechanica Solida Sinica 22/5 (2009) 479-486.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7286edc-6ed6-489a-8e48-bd155e7cf518
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.