PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of the Cruciform Sample Shapes for Bi-Axial Tensile Tests Based on the Geometries Currently Presented in the Literature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper contributes to the global research of the best shape of cruciform samples for biaxial tensile tests. Based on literature research, one of the proposed samples’ shape comparison methodology was employed to achieve the ultimate results. A variety of specimens with different shapes were compared and modelled with the use of Finite Element Method (FEM). Afterwards, five the most promising sample shapes were examined on a tests stand to validate the simulation results. Based on the obtained research results a new parameter defining the ability of the cruciform sample to reach the possible achievable strain in the centre area, was introduced. The obtained data shows, that sample with the highest Relative Cost Function parameter (RCF) presented the highest strain in the gauge region and the sample with the lowest RCF reached the lowest strain in the center. The rest of the samples remained within the general trend showing a compatibility between the RCF parameter and the obtained strain.
Słowa kluczowe
Twórcy
  • Lodz University of Technology
  • Lodz University of Technology
  • Lodz University of Technology
autor
  • Lodz University of Technology
  • PSA Groupe
  • Lodz University of Technology
Bibliografia
  • 1. Rowe J. Advanced Materials in Automotive Engineering. Woodhead Publishing Limited; 2012.
  • 2. Horvath C.D. Advanced steels for lightweight automotive structures. In Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing Limited; 2010:35-78.
  • 3. Rojek J., Lumelskyy D., Pęcherski R., Grosman F., Tkocz M., Chorzępa W. Forming limit curves for complex strain paths. Archives of Metallurgy and Materials. 2013;58(2):587-593.
  • 4. Nakazima K., Kikuma T., Hasuka K. Study of the formability of steel sheets. Yamata Technical Report. 1968;264:8517-8530.
  • 5. Hecker S. S., Simple technique for determining forming limit curves. Sheet Metal Industries. 1975;52:671–676.
  • 6. Marciniak Z., Kuczyński K. Limit strains in the processes of stretch-forming sheet metal. International Journal of Mechanical Sciences. 1967;9(9):609-612.
  • 7. Hsu E., Carsley J. E., Verma R. Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures. Journal of Materials Engineering and Performance. 2008;17(3):288-296.
  • 8. Leotoing L., Guines D., Zidane I., Ragneau E. Cruciform shape benefits for experimental and numerical evaluation of sheet metal formability. Journal of Materials Processing Technology. 2013;213:856–863.
  • 9. Shao Z., Li N., Lin J. The optimisation of cruciform specimen for the formability evaluation of AA6082 under hot stamping conditions. Procedia Engineering. 2017;207:735–740.
  • 10. Creuziger A., Iadicola M. A., Foecke T., Rust E., Banerjee D. Insights into Cruciform Sample Design. The Journal of The Minerals, Metals & Materials Society. 2017;69:902-906.
  • 11. Karadogan C., Emin Tamer M. A novel and simple cruciform specimen without slits on legs yet higher plastic strains in gauge. Procedía Engineering. 2017;207:1922-1927.
  • 12. Song X., Leotoing L., Guines D., Ragneau E. Characterization of forming limits at fracture with an optimized cruciform specimen: Application to DP600 steel sheets. International Journal of Mechanical Sciences. 2017;126:35-43.
  • 13. Song X., Leotoing L., Guines D., Ragneau E. Investigation of the forming limit strains at fracture of AA5086 sheets using an in-plane biaxial tensile test. Engineering Fracture Mechanics. 2016;163:130–140.
  • 14. Baptista R., Claudio R. A., Reis L., Madeira J. F. A., Freitas M. Optimal Cruciform Specimen Design Using the Direct Multi-search Method and Design Variable Influence Study. Procedia Structural Integrity. 2017;5:659–666.
  • 15. Smits A., Van Hemelrijck D., Philippidis T.P., Cardon A. Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates. Composites Science and Technology. 2006;66:964-975.
  • 16. Hou Y., Min J., Lin J., Carsley J. E., Stoughton T. B. Cruciform specimen design for large plastic strain during biaxial tensile testing, Journal of Physics: Conference Series. 2018;1063.
  • 17. Nasdala L., Husni A.H. Determination of Yield Surfaces in Accordance With ISO 16842 Using an Optimized Cruciform Test Specimen. Experimental Mechanics. 2020;60:815-832.
  • 18. Upadhyay M.V., Panzner T., Van Petegem S., Van Swygenhoven H. Stresses and Strains in Cruciform Samples Deformed in Tension. Experimental Mechanics. 2017;57: 905-920.
  • 19. Lamkanfi E., Van Paepegem W., Degrieck J. Shape optimization of a cruciform geometry for biaxial testing of polymers. Polymer Testing. 2015;41:7-16.
  • 20. Hanabusa Y., Takizawa H., Kuwabara T. Numerical verification of biaxial tensile test method using a cruciform specimen. Journal of Materials Processing Technology. 2013;213:961-970.
  • 21. Liu W., Guines D., Leotoing L., Ragneau E. Identification of sheet metal hardening for large strains with an in-plane biaxial tensile test and a dedicated cross specimen. International Journal of Mechanical Sciences. 2015;101-102:387–398.
  • 22. Pereira A B., Fernandes F.A.O., de Morais A. B., Maio J. Biaxial Testing Machine: Development and Evaluation, MDPI Machines. 2020, 8(3).
  • 23. Makris A., Vandebergh T., Ramault C., Van Hemelrijck D., Lamkanfi E., Van Paepegem W. Shape optimisation of a biaxially loaded cruciform specimen. Polymer Testing. 2010;29:216-223.
  • 24. Mitukiewicz G., Głogowski M. Cruciform specimen to obtain higher plastic deformation in a gauge region. Journal of Materials Processing Technology. 2016;227:11-15.
  • 25. Mitukiewicz G., Głogowski M., Stelmach J.; Leyko J.; Dimitrova Z.; Batory D. Strengthening of cruciform sample arms for large strains during biaxial stretching. Materials Today Communications. 2019;21:100692.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7266d1f-f6b4-4709-94ff-5ff3b5022753
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.