Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We demonstrate in this study that a rotating magnetic field (RMF) and spinning magnetic particles using this kind of magnetic field give rise to a motion mechanism capable of triggering mixing effect in liquids. In this experimental work two mixing mechanisms were used, magnetohydrodynamics due to the Lorentz force and mixing due to magnetic particles under the action of RMF, acted upon by the Kelvin force. To evidence these mechanisms, we report mixing time measured during the neutralization process (weak acid-strong base) under the action of RMF with and without magnetic particles. The efficiency of the mixing process was enhanced by a maximum of 6.5% and 12.8% owing to the application of RMF and the synergistic effect of magnetic field and magnetic particles, respectively
Czasopismo
Rocznik
Tom
Strony
157--–172
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
autor
- Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
autor
- Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
Bibliografia
- 1. Baldyga J., Bourne J.R., 1988. Calculation of micromixing in inhomogenous stirred tank reactors. Chem. Eng. Res. Des., 66(1), 33–38.
- 2. Baldyga J., Bourne J.R., 1992. Interactions between mixing on various scales in stirred tank reactors. Chem. Eng. Sci., 47, 1839–1848. DOI: 10.1016/0009-2509(92)80302-S.
- 3. Bałdyga J., Pohorecki R., 2013. Editorial. 14th European Conference on Mixing. Chem. Eng. Res. Des., 91(11),2071–2072). DOI: 10.1016/j.cherd.2013.10.021.
- 4. Bao S.R., Zhang R.P., Rong Y., Zhi X.Q., Qiu L.M., 2019. Interferometric study of the heat and mass transfer during the mixing and evaporation of liquid oxygen and nitrogen under non-uniform magnetic field. Int. J. Heat Mass Transfer, 136, 10–19. DOI: 10.1016/j.ijheatmasstransfer.2019.02.044.
- 5. Boroun S., Larachi F., 2016. Role of magnetic nanoparticles in mixing, transport phenomena and reaction engi neering – challenges and opportunities. Curr. Opin. Chem. Eng., 13, 91–99. DOI: 10.1016/j.coche.2016.08.011.
- 6. Boulware J.C., Ban H., Jensen, S., Wassom S., 2010. Influence of geometry on liquid oxygen magnetohydrody namics. Exp. Therm Fluid Sci., 34, 1182–1193. DOI: 10.1016/j.expthermflusci.2010.04.007.
- 7. Chen X., Zhang L., 2019. A review on micromicers acuated with magnetic nanomaterials. Microchim Acta, 184, 3639–3649. DOI: 10.1007/s00604-017-2462-2.
- 8. Davidson P.A., 1999. Magnetohydrodynamics in materials processing. Annu. Rev. Fluid Mech., 31, 273–300. DOI: 10.1146/annurev.fluid.31.1.273.
- 9. Davidson P.A., 2001. An introduction to magnetohydrodynamics. Cambridge Uniwversity Press. DOI: 10.1017/CBO9780511626333.
- 10. Ergin F.G., Watz B.B., Erglis K., Cěbers A., 2015. Time-resolved velocity measurements in a magnetic micromixer. Exp. Therm Fluid Sci., 67. DOI: 10.1016/j.expthermflusci.2015.02.019.
- 11. Gao Y., 2013. Active mixing and catching using magnetic particles. Phd Thesis. Technische Universiteit Eindhoven. DOI: 10.6100/IR759475.
- 12. Gopalakrishnan S., Thess A., 2010. Chaotic mixing in electromagnetically controlled thermal convection of glass melt. Chem. Eng. Sci., 65, 5309–5319. DOI: 10.1016/j.ces.2010.07.008.
- 13. Hajiani P., Larachi F., 2014. Magnetic-field assisted mixing of liquids using magnetic nanoparticles. Chem. Eng. Process., 84, 31–37. DOI: 10.1016/j.cep.2014.03.012.
- 14. Hajiani P, Larachi F., 2013. Remotely excited magnetic nanoparticles and gas–liquid mass transfer in Taylor flow regime. Chem. Eng. Sci., 93, 257–265. DOI: 10.1016/j.ces.2013.01.052.
- 15. Hao Z., Zhu Q., Jiang Z., Li H., 2008. Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic flu idized bed and its application to CH4-CO2 reforming. Powder Technol., 183, 46–52. DOI: 10.1016/j.powtec.2007.11.015.
- 16. Harnby N., Edwards M.F., Nienow A.W., 1985. Mixing in the process industries. Butterworth-Heinemann. DOI: 10.1016/b978-0-7506-3760-2.x5020-3.
- 17. Hausmann R., Reichert C., Franzreb M., Höll W.H., 2004. Liquid-phase mass transfer of magnetic ion exchangers in magnetically influenced fluidized beds: II. AC fields. React. Funct. Polym., 60, 17–26. DOI: 10.1016/j.reactfunct polym.2004.02.007.
- 18. Hristov J., 2002. Magnetic field assisted fluidization – a unified aproach Part 1. Fundamentals and relevant hydrody namics of gas-fluidized beds (batch solids mode).Rev. Chem. Eng., 18, 295–512. DOI: 10.1515/REVCE.2002.18.4-5.295.
- 19. Hristov J., 2007. Magnetic field assisted fluidization-Dimensional analysis addressing the physical basis. China Particuology, 5, 103–110. DOI: 10.1016/j.cpart.2007.03.002.
- 20. Hristov J., 2010. Magnetic field assisted fluidization – A unified approach. Part 8. Mass transfer: Magnetically assisted bioprocesses. Rev. Chem. Eng., 26, 55–128. DOI: 10.1515/REVCE.2010.006.
- 21. Hristov J.Y., 1998. Fluidization of ferromagnetic particles in a magnetic field Part 2: Field effects on preliminarily gas fluidized bed. Powder Technol., 97, 35–44. DOI: 10.1016/S0032-5910(97)03392-5.
- 22. Krakov M.S., 2020. Mixing of miscible magnetic and non-magnetic fluids with a rotating magnetic field. J. Magn. Magn. Mater., 498. DOI: 10.1016/j.jmmm.2019.166186.
- 23. Lange A., 2002. Kelvin force in a layer of magnetic fluid. J. Magn. Magn. Mater., 241, 327–329. DOI: 10.1016/S0304-8853(01)01368-3.
- 24. Lu X., Li H., 2000. Fluidization of CaCO3 and Fe2O3 particle mixtures in a transverse rotating magnetic field. Powder Technol., 107, 66–78. DOI: 10.1016/S0032-5910(99)00092-3.
- 25. Moffatt H.K., 1965. On fluid flow induced by a rotating magnetic field. J. Fluid Mech., 22, 521–528. DOI: 10.1017/ S0022112065000940.
- 26. Moffatt H.K., 1990. On the behaviour of a suspension of conducting particles subjected to a time-periodic magnetic field. J. Fluid Mech., 218, 509–529. DOI: 10.1017/S0022112090001094.
- 27. Moffatt H.K., 1991. Electromagnetic stirring. Phys. Fluids A, 3, 1336–1343. DOI: 10.1063/1.858062.
- 28. Molokov S., Moreau R., Moffat H.K., 2007. Magnetohydrodynamics. Historical evolution and trends. Springer Science+Business Media B.V. DOI: 10.1007/978-1-4020-4833-3.
- 29. Nouri D., Zabihi-Hesari A., Passandideh-Fard M., 2017. Rapid mixing in micromixers using magnetic field. Sens. Actuators, A, 255, 79–86. DOI: 10.1016/j.sna.2017.01.005.
- 30. Olivier G., Pouya H., Faďçal L., 2014. Magnetically induced agitation in liquid–liquid–magnetic nanoparticle emulsions: Potential for process intensification. AIChE J., 60, 1176–1181. DOI: 10.1002/AIC.14331.
- 31. Penchev I.P., Hristov J.Y., 1990. Fluidization of beds of ferromagnetic particles in a transverse magnetic field. Powder Technol., 62, 1–11. DOI: 10.1016/0032-5910(90)80016-R.
- 32. Poulsen B.R., Iversen J.J.L., 1997. Mixing determinations in reactor vessels using linear buffers. Chem. Eng. Sci., 52, 979–984. DOI: 10.1016/S0009-2509(96)00466-6.
- 33. Rakoczy R., Masiuk S., 2010. Influence of transverse rotating magnetic field on enhancement of solid dissolution process. AIChE J., 56, 1416–1433. DOI: 10.1002/aic.12097.
- 34. Rakoczy R., Konopacki M., Lechowska J., Bubnowska M., Hürter A., Kordas M., Fijałkowski K., 2018. Gas to liquid mass transfer in mixing system with application of rotating magnetic field. Chem. Eng. Process., 130, 11–18. DOI: 10.1016/j.cep.2018.05.013.
- 35. Rakoczy R., Kordas M., Story G., Konopacki M., 2014. The characterization of the residence time distribution in a magnetic mixer by means of the information entropy. Chem. Eng. Sci., 105, 191–197. DOI: 10.1016/j.ces.2013.10.014.
- 36. Rakoczy R., Masiuk S., 2011. Studies of a mixing process induced by a transverse rotating magnetic field. Chem. Eng. Sci., 66, 2298–2308. DOI: 10.1016/j.ces.2011.02.021.
- 37. Reichert C., Hoell W.H., Franzreb M., 2004. Mass transfer enhancement in stirred suspensions of magnetic particles by the use of alternating magnetic fields. Powder Technol., 145, 131–138. DOI: 10.1016/j.powtec.2004.06.010.
- 38. Ruzicka M.C., 2008. On dimensionless numbers. Chem. Eng. Res. Des., 86, 835–868. DOI: 10.1016/j.cherd.2008.03.007.
- 39. Sedov L.I., 1959. Similarity and dimensional methods in mechanics. Academic Press Inc. DOI: 10.1016/C2013-0-08173-X.
- 40. Shanko E-S., van de Burgt Y., Anderosn P.D., den Toonder J.M.J., 2017. Microfluidic magnetic mixing at low Reynolds numbers and in stagnant fluids. Micromachines, 10, 731. DOI: 10.3390/mi10110731.
- 41. Sołoducha D., Borowski T., Kordas M., Konopacki M., Rakoczy R., 2020. Studies of neutralization reaction induced by rotating magnetic field. Chem. Pap., 74, 3517–3526. DOI: 10.1007/s11696-020-01174-6.
- 42. Spitzer K.H., 1999. Application of rotating magnetic fields in Czochralski crystal growth. Prog. Cryst. Growth Charact. Mater., 38, 59–71. DOI: 10.1016/S0960-8974(99)00008-X.
- 43. Tan R.K., Eberhard W., Büchs J., 2011. Measurement and characterization of mixing time in shake flasks. Chem. Eng. Sci., 66, 440–447. DOI: 10.1016/j.ces.2010.11.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a723fc4c-413f-4928-9a24-b91e94f505a9