PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Enhancement photocatalytic activity of Mn doped CdS/ZnO nanocomposites for the degradation of methylene blue under solar light irradiation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, Mn doped CdS/ZnO nanocomposites synthesized by co-precipitation method and its photocatalytic activity was tested using methylene blue under solar light irradiation. The prepared hybrid nanocomposites are characterized by using different physicochemical techniques including XRD, FESEM, EDX, TEM, UV-vis DRS and PL analysis. From the XRD analysis, Mn doped ZnO/CdS nanocomposite diffraction peaks only reflect the binary crystalline structures of ZnO and CdS. However, there is no characteristic peak of Mn is found that may be because of low content of Mn doped on ZnO/CdS. But Mn (2.9 wt%) was detected in the Mn doped ZnO/CdS nanocomposite, which was measured by EDX analysis. The FESEM and TEM results exhibit the surface particle of Mn doped ZnO/CdS nanocomposite which have spherical nature and confirmed the formation of Mn doped ZnO/CdS nanocomposites. The photocatalytic degradation results have revealed that the Mn doped CdS/ZnO nanocomposites exhibit admirable activity toward the photocatalytic degradation of the MB. The reason for excellent photocatalytic activity of Mn doped CdS/ZnO nanocomposites indicates the absorbance band shifted to red region and reduction of recombination of photogenerated electron-hole, which is in good agreement with UV-visible DRS analysis and PL study results. The fitted kinetic plots showed a pseudo-first-order reaction model and the appropriate rate constants were found to be 0.0068 min−1, 0.00846 min−1, and 0.0188 min−1, for ZnO, 25 % CdS/ZnO, and 0.8 mol% Mn doped CdS/ZnO nanocomposites, respectively. The maximum photocatalytic activity was achieved by 0.8 mol% Mn doped CdS/ZnO nanocomposites with a 95% degradation efficiency of MB. Hydroxyl and superoxide radicals, having a vital role in the degradation of MB, confirmed scavenging experiments. In addition, the recycling tests displays that the Mn doped CdS/ZnO nanocomposites have shown good stability and long durability. The enhanced photodegradation activity of Mn doped CdS/ZnO nanocomposites indicates the potential of the nanocomposite for the treatment of organic pollutants from the textile wastewater.
Rocznik
Strony
28--48
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, Periyar University, Salem-11, Tamil Nadu, India
  • Department of Chemistry, Government Arts College, Selem-7 Tamil Nadu, India
  • Department of Chemistry, E.R.K Arts and Science College, Dharmapuri, Tamil nadu, India
  • Department of Chemistry, Arignar Anna Government Arts and Science College, Attur, Tamil Nadu, India
Bibliografia
  • 1. Kazemi, H., Hakki, P., Shekari, A. Najafidoust, et al., Influence of Calcination Temperature and Operational Parameters on Fe-ZSM-5 Catalyst performance in Sonocatalytic Degradation of Phenol from wastewater, Journal of Water Environmental Nanotechnology, 6 (2), 150–163 (2021) 10.22090/JWENT.2021.02.005
  • 2. Vallejo, W., Cantillo, A., Salazar, et al., Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiation, Catalysts, 10, 528, 1-13(2020). https://doi.org/10.3390/catal1005052
  • 3. Shen, Y.; Zhu, K.E.; He, D.et al., Tetracycline removal via adsorption and metal-free catalysis with 3D macroscopic N-doped porous carbon nanosheets: Nonradical mechanism and degradation pathway. J. Environ. Sci. (2022) 111, 351–366. https://doi.org/10.1016/j.jes.2021.04.014
  • 4. Prajapati, A.K.; Mondal, M.K. Development of CTAB modified ternary phase α-Fe2O3-Mn2O3-Mn3O4 nanocomposite as innovative super-adsorbent for Congo red dye adsorption, J. Environ. Chem. Eng. (2021) 9, 104827. DOI:10.1016/j.jece.2020.104827
  • 5. Nas, M.S. et al., Synthesis, characterization, kinetics and adsorption properties of Pt-Co@GO nano-adsorbent for methylene blue removal in the aquatic mediums using ultrasonic process systems. J. Mol. Liq.. (2019), 296, 112100. https://doi.org/10.1016/j.molliq.2019.112100
  • 6. Medhat, A.; et al., Efficiently activated carbons from corn cob for methylene blue adsorption. Appl. Surf. Sci. Adv. (2021), 3, 100037
  • 7. Zhao, R.; et al., Highly flexible magnesium silicate nanofibrous membranes for effective removal of methylene blue from aqueous solution. Chem. Eng. J. (2019) 359, 1603–1616. https://doi.org/10.1016/j.cej.2018.11.011
  • 8. Liu, C.; et al., Synergetic degradation of methylene blue through photocatalysis and fenton reaction on two-dimensional molybdenite-fe. J. Environ. Sci. (2022) 111, 11–23 https://doi.org/10.1016/j.jes.2021.03.001
  • 9. Nada, A.A.; et al., Mesoporous ZnFe2O4@TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials. J. Phys. Chem. C. (2017) 121 (44), 24669–24677. https://doi.org/10.1021/acs.jpcc.7b08567
  • 10. Tantawy, H.R.; et al., Novel synthesis of bimetallic Ag–Cu nanocatalysts for rapid oxidative and reductive degradation of anionic and cationic dyes. Appl. Surf. Sci. Adv. (2021) 3, 100056. https://doi.org/10.1016/j.apsadv.2021.100056
  • 11. El-Maghrabi, H.H.; Ali, H.R.; Younis, S.A. Construction of a new ternary α-MoO3–WO3/CdS solar nanophotocatalyst towards clean water and hydrogen production from artificial wastewater using optimal design methodology. RSC Adv. (2017) 7 (8), 4409–442. https://doi.org/10.1039/C6RA25146C
  • 12. Samsami, S.; Mohamadi, M.; Sarrafzadeh, M.H.; et al., Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Proc. Saf. Environ. Prot. (2020) 143, 138–163. https://doi.org/10.1016/j.psep.2020.05.034
  • 13. Balcha, A.; Yadav, O.P.; Dey, T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. (2016) 23, 25485–25493
  • 14. Chen, X.; Wu, Z.; Liu, D.; et al., Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. (2017) 12 (143), 1–10
  • 15. Fujishima, A.; Xintong, Z.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. (2008) 63 (12), 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001
  • 16. Su, B.; Zhong, M.; Han, L.; et al., Eco-friendly preparation of hierarchically selfassembly porous ZnO nanosheets for enhanced photocatalytic performance, Mater. Res. Bull. (2020) 124 110777–110781. https://doi.org/10.1016/j.materresbull.2020.110777
  • 17. Serr`a, A.; Pip, P.; Gomez, E.; et al., Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins, Appl. Catal. B (2020) 268 118745. https://doi.org/10.1016/j.apcatb.2020.118745
  • 18. Qiu, J.; Li, M.; Wan, Y. et al., One-pot fabrication of CdxZn1-xS/ZnO nanohybrid using mixed sulfur sources for photocatalysis, Mater. Res. Bull. (2020) 125 110776–110782. https://doi.org/10.1016/j.materresbull.2020.110776
  • 19. Wang, L.; Muhammed, M. Synthesis of zinc oxide nanoparticles with controlled morphology. J. Mater. Chem. 1999, 9, 2871–2878
  • 20. Bahnemann, D.W.; Kormann, C.; Hoffmann, M.R. Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 1987, 91, 3789–3798
  • 21. Zhang, J.; Sun, L.D. Control of ZnO morphology via a simple solution route. Chem. Mater. 2002, 14, 4172–4177
  • 22. Chen, W.; Caia, W.; Zhangb, L.; Wanga, G.; Zhanga, L. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J. Colloid Interface Sci. 2001, 238, 291–295
  • 23. Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials 2020, 10, 1086
  • 24. Ali, N. M., Kareem, A. A. Ionic conductivity enhancement for PVA/ 20wt.% CuSO4 gel polymer electrolyte by using glycerin Chalcogenide Lett. 19, 3, 2022, 217 – 225
  • 25. Kareem, A. A., Rasheed, H. K., Nasir, E. M. Influence methods of preparation on the thermal stability of polyimide/silica dust. Polym. Bull. 2021 1-10
  • 26. Aseel A Kareem, Enhanced thermal and electrical properties of epoxy/carbon fiber–silicon carbide composites Adv. Compos. Lett. 29: 1–6 2020
  • 27. Li, Y.-Q.; Fu, S.-Y.; Mai, Y.-W. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer (2006) 47 (6), 2127–2132. https://doi.org/10.1016/j.polymer.2006.01.071
  • 28. Thi, V.H.T.; Lee, B.-K. Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J. Hard Mater. (2017) 324, 329–339. https://doi.org/10.1016/j.jhazmat.2016.10.066
  • 29. Akhundi, A.; Habibi-Yangjeh, A. Ternary magnetic g-C3N4/Fe3O4/AgI nanocomposites: novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light. Mater. Chem. Phys. (2016) 174, 59–69. https://doi.org/10.1016/j.matchemphys.2016.02.052
  • 30. Zirak, M.; Moradlou, O.; Bayati, M. et al., On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells, Appl. Surf. Sci. (2013) 273 391-398. https://doi.org/10.1016/j.apsusc.2013.02.050
  • 31. Khanchandani, S.; Kundu, S.; Patra, A. et al., Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core–Shell Nanorods, J. of Phys. Chem. C. (2012) 116, 23653- 23662. https://doi.org/10.1021/jp3083419
  • 32. Gao, P.; Liu, J.; Zhang, T. et al., Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation, J. Hazard. Mater. (2012) 229–230, 209-216. DOI : 10.1016/j.jhazmat.2012.05.099
  • 33. Zirak, M.; Akhavan, O.; Moradlou, O. Vertically aligned ZnO@ CdS nanorod heterostructures for visible light photoinactivation of bacteria, J. Alloys Compd. (2014) 590, 507-513. https://doi.org/10.1016/j.jallcom.2013.12.158
  • 34. Jana, T.; Pal, A.; Chatterjee, K. Self assembled flower like CdS–ZnO nanocomposite and its photo catalytic activity, J. Alloys Compd. (2014) 583, 510-515. https://doi.org/10.1016/j.jallcom.2013.08.184
  • 35. Yeb, W.; Jianga, Y.; Liua, Q. et al., The preparation of visible light-driven ZnO/Ag2MoO4/Ag nanocomposites with effective photocatalytic and antibacterial activity, J. Alloys Compd. (2021) 891, 161898. https://doi.org/10.1016/j.jallcom.2021.161898
  • 36. Kumaria, V.; Yadava, S.; Mittala, A. et al., Surface Plasmon response of Pd deposited ZnO/CuO nanostructures with enhanced photocatalytic efficacy towards the degradation of organic pollutants, Inorg. Chem. Commun. (2020) 121, 108241. https://doi.org/10.1016/j.inoche.2020.108241
  • 37. Zhang, P.; Su, Q.; Han, L. et al., Facile fabrication of magnetic Ag/ZnO/Fe3O4 composite and the photocatalytic performance under simulated sunlight irradiation, Molecular Catal. (2021) 508 111606. https://doi.org/10.1016/j.mcat.2021.111606
  • 38. Barman, J.; Das, A.; Banik, B. et al., Optimizing ZnO/CdS Nano Composite Controlled by Fe Doping Towards Efficiency in Water Treatment and Antimicrobial Activity, Curr. World Environ. (2021) 16(3). http://dx.doi.org/10.12944/CWE.16.3.6
  • 39. Nekooie, R.; Shamspur, T.; Mostafavi, A. Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation, J. Photochem. Photobiol. A (2020)11303. https://doi.org/10.1016/j.jphotochem.2020.113038
  • 40. Shafi, A.; Ahmad, N.; Sultana, S.; Sabir, S.; and Khan, M. Z. Ag2S-Sensitized NiO−ZnO Heterostructures with Enhanced Visible Light Photocatalytic Activity and Acetone Sensing Property, ACS Omega. (2019) 4, 12905−12918 https://doi.org/10.1021/acsomega.9b01261
  • 41. Mohsin J Muhammad A Q. Sammia S. Hashem O. Alsaabb and Salma A. Highly efficient visible light active Cu–ZnO/S-gC3N4 nanocomposites for efficient photocatalytic degradation of organic pollutants, RSC Adv., 2021, 11, 37254–37267
  • 42. Tian, J. Liu, Q. Ge, C. Xing, Z. Asiri, A. M. Al-Youbi, A. O.; Sun, X., Ultrathin Graphitic Carbon Nitride Nanosheets: A Low-Cost, Green, and Highly Efficient Electrocatalyst Toward the Reduction of Hydrogen Peroxide and its Glucose Biosensing Application. Nanoscale 2013;5: 8921.
  • 43. Wang, W.; Zhang, D.; Ji, Z. et al., High efficiency photocatalytic degradation of indoor formaldehyde with silver-doped ZnO/g-C3N4 composite catalyst under the synergistic effect of silver plasma effect and heterojunction, Optic Mater. (2021) 111, 110721. https://doi.org/10.1016/j.optmat.2020.110721
  • 44. Pranesh Shubha, J.; Adil, S. F.; Khan, M. et al., Facile Fabrication of a ZnO/Eu2O3/NiO-Based Ternary Heterostructure Nanophotocatalyst and Its Application for the Degradation of Methylene Blue, ACS Omega. (2021) 6, 3866−3874. https://doi.org/10.1021/acsomega.0c05670
  • 45. Toledo Camacho, S.Y.; Rey, A.; Hernández-Alonso, M.D. et al., Pd/TiO2-WO3 photocatalysts for hydrogen generation from water-methanol mixtures, Appl. Surf. Sci. (2018) 455, 570–580
  • 46. Kumari, V.; Kumar, N.; Yadav, S. et al., Novel mixed metal oxide (ZnO.La2O3.CeO2) synthesized via hydrothermal and solution combustion process – a comparative study and their photocatalytic properties, Mater. Today: Proc. (2019) 19, 650–657. https://doi.org/10.1016/j.matpr.2019.07.748
  • 47. Kumaria, V.; Yadava, S.; Mittala, A. Surface Plasmon response of Pd deposited ZnO/CuO nanostructures with enhanced photocatalytic efficacy towards the degradation of organic pollutants, Inorg. Chem. Commun. (2020) 121, 108241. https://doi.org/10.1016/j.inoche.2020.108241
  • 48. Saravanakumar, K.; Karthik, R.; Chen, S.-M. et al., Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification, J. Colloid Interface Sci. (2017) 504, 514–526. DOI: 10.1016/j.jcis.2017.06.003
  • 49. Samsudin, M. F. R. et al. Exploring the role of electron-hole scavengers on optimizing the photocatalytic performance of BiVO4. Mater Today: Proc. (2018) 5(10, Part 2), 21703-9 DOI:10.1016/j.matpr.2018.07.022
  • 50. Eskizeybek, V.; Sarı, F.; Gülce, H.; Gülce, A.; Avcı, A. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B Environ. 2012, 119–120, 197–206. Compare
  • 51. Muna A. Abu-Dalo, Saja A. Al-Rosan and Borhan A. Albiss Photocatalytic Degradation of Methylene Blue Using Polymeric Membranes Based on Cellulose Acetate Impregnated with ZnO Nanostructures Polymers 2021, 13, 3451
  • 52. Biswal, H.J.; Yadav, A.; Vundavilli, P.R.; Gupta, A. High aspect ZnO nanorod growth over electrodeposited tubes for photocatalytic degradation of EtBr dye. RSC Adv. 2021, 11, 1623–1634.
  • 53. Nadeem, M.S.; Munawar, T.; Mukhtar, F.; Rahman, M.N.U.; Riaz, M.; Iqbal, F. Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceram. Int. 2021, 47, 11109–11121.
  • 54. Liu, W.; Cai, J.; Li, Z. Self-assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis, ACS Sustain. Chem. Eng. (2015) 3, 277–282 https://doi.org/10.1021/sc5006473.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7202e48-a0fb-4e5c-8104-5bd3c3b391e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.