Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fe-toxicity is a critical and complicated constraint to rice growth that requires simple and quick screening methods for selection of tolerant rice to Fe-stress. This study revealed relative changes in the growth and recovery of rice responding to Fe-toxicity at germination and vegetative stages. Two rice cultivars were exposed to iron concentrations of 0, 50, 100, and 200 ppm at the germination stage and Fe-treatment of 50–100 and 100–200 ppm at the vegetative stage. Increasing Fe-toxicity reduced germination rates, seedling height, length and number of seedling roots. However, relative reduction to control in seedling height and root length at germination could be more dependable to check genotypes tolerant to Fe stress than other parameters. Growth characteristics measured at 6, 12, 18, and 24-day excess Fe indicated that plant height, number of tillers, and leaves were kept slightly relative increasing to control until 18-day and 12-day, respectively. In contrast, root length and root number decreased as soon as plants were exposed to Fe-stress. Relative decrease in growth to control increased with higher iron concentration and longer exposure time. Plants exhibited ability to recover after 24-day under stress with relative increase to the point before stress relieving from 3–12% for plant height, 1–11% for tiller number, and 7–19% for root number. There were significant differences between two cultivars for relative changes in growth and recovery parameters, suggesting a simple and efficient method, and suitable growth parameters for evaluating and selecting tolerant genotypes to Fe-stress at germination and vegetative stages.
Czasopismo
Rocznik
Tom
Strony
25--37
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Faculty of Agronomy, Vietnam National University of Agriculture, Vietnam
autor
- Faculty of Agronomy, Vietnam National University of Agriculture, Vietnam
autor
- Faculty of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Vietnam
autor
- Faculty of Agronomy, Vietnam National University of Agriculture, Vietnam
Bibliografia
- 1. Ahmed S.F., Ullah H., Aung M.Z., Tisarum R., ChaUm S., Datta A. 2023. Iron toxicity tolerance of rice genotypes in relation to growth, yield and physiochemical characters. Rice Science, 30(4), 321–334. DOI:10.1016/j.rsci.2023.02.002.
- 2. Asch F., Becker M., Kpongor D.S. 2005. A quick and efficient screen for resistance to iron toxicity in lowland rice. Journal of Plant Nutrition and Soil Science, 168(6), 764–773. DOI:10.1002/ jpln.200520540.
- 3. Attanandana T., Vacharotayan S. 1986. Acid sulfate soils: Their characteristics, genesis, amelioration and utilization (problem soils in Southeast Asia). Southeast Asian Studies, 24(2), 154–180.
- 4. Audebert A., Fofana M. 2009. Rice yield gap due to iron toxicity in West Africa. Journal of Agronomy and Crop Science, 195(1), 66–76. DOI:10.1111/j.1439-037X.2008.00339.x.
- 5. Audebert A., Sahrawat K.L. 2000. Mechanisms for iron toxicity tolerance in lowland rice. Journal of Plant Nutrition, 23:11–12, 18771885, DOI:10.1080/01904160009382150.
- 6. Aung M.S., Masuda H. 2020. How does rice defend against excess iron?: Physiological and molecular mechanisms. Frontiers in Plant Science, 11, 546092. DOI:10.3389/fpls.2020.01102.
- 7. Aung M.S., Masuda H., Kobayashi T., Nishizawa N.K. 2018. Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Science and Plant Nutrition, 64, 370–385. DOI:10.1080/00380768.2018.1443754.
- 8. Bashir K., Nozoye T., Nagasaka S., Rasheed S., Miyauchi N., Seki M., Nakanishi H., Nishizawa N.K. 2017. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. Journal of Experimental Botany, 68(7), 17851795. DOI:10.1093/jxb/erx065.
- 9. Bashir K., Hanada K., Shimizu M., Seki M., Nakanishi H., Nishizawa N.K. 2014. Transcriptomic analysis of rice in response to iron deficiency and excess. Rice, 7(1), 1–15. DOI:10.1186/s12284-014-0018-1.
- 10. Batty L.C., Younger P.L. 2003. Effects of external iron concentration upon seedling growth and uptake of Fe and Phosphate by the common reed, Phragmites australis (Cav.) Trin ex. Steudel. Annals of Botany, 92(6), 801–806. DOI: 10.1093/aob/mcg205.
- 11. Becker M., Asch F. 2005. Iron toxicity in rice - Conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168(4), 558–573. DOI:10.1002/jpln.200520504.
- 12. Bresolin A.P.S., dos Santos R.S., Wolter R.C.D., de Sousa R.O., da Maia L.C., de Oliveira A.C. 2019. Iron tolerance in rice: an efficient method for performing quick early genotype screening. BMC Research Notes, 12, 361. DOI: 10.1186/s13104-019-4362-5.
- 13. Briat J.F., Lobréaux S. 1997. Iron transport and storage in plants. Trends Plant Science, 2, 187–193. DOI:10.1016/S1360-1385(97)85225-9.
- 14. Chérif M., Audebert A., Fofana M., Zouzou M. 2009. Evaluation of iron toxicity on lowland irrigated rice in West Africa. Tropicultura, 27, 88–92.
- 15. Crestani M., da Silva J.A G., da Souza V.Q., Hartwig I., Luche H.S., de Sousa R.O., et al. 2009. Irrigated rice genotype performance under excess iron stress in hydroponic culture. Crop Breeding and Applied Biotechnology, 9, 87–95. DOI: 10.12702/19847033.v09n01a12.
- 16. Dufey I., Draye X., Lutts S., Lorieux M., Martinez C., Bertin P. 2015. Novel QTLs in an interspecific backcross Oryza sativa × Oryza glaberrima for resistance to iron toxicity in rice. Euphytica, 204, 609–625. DOI: 10.1007/s10681-014-1342-7.
- 17. Fageria N.K. 2007. Yield physiology of rice. Journal of Plant Nutrition, 30, 843–879. DOI:10.1080/15226510701374831.
- 18. Fageria N.K., Baligar V.C., Li Y.C. 2008. The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of Plant Nutrition, 31(6), 1121–1157. DOI:10.1080/01904160802116068.
- 19. Gridley H.E., Efisue A., Tolou B., Bakayako T. 2006. Breeding for tolerance to iron toxicity at WARDAl; Africa Rice Center (WARDA): Cotonou, Benin, pp. 96–111.
- 20. Gross J., Stein R.J., Fett-Neto A.G., Fett J.P. 2003. Iron homeostasis related genes in rice. Genetics and Molecular Biology, 26, 477–497. DOI:10.1590/ S1415-47572003000400012.
- 21. IRRI. 2021. Phenotyping protocols for abiotic stress tolerance in rice. International Rice Research Institute, Los Baños, Philippines. https://excellenceinbreeding.org/toolbox/tools/phenotyping-protocolsabiotic-stress-tolerance-rice. Accessed dated 20 November 2023.
- 22. Kar S., Mai H., Khalouf H., Ben Abdallah H., Flachbart S., Bräutigam A., Xiong G., Shang L., Panda S.K., Bauer P. 2021. Comparative transcriptomics of lowland rice varieties uncovers novel candidate genes for adaptive iron excess tolerance. Plant and Cell Physiology, 62(4), 624–640. DOI:10.1093/ pcp/pcab018.
- 23. Keita A., Yacouba H., Hayde L.G., Schultz B. 2013. A single-season irrigated rice soil presents higher iron toxicity risk in tropical savannah valley bottoms. Open Journal of Soil Science, 3(7): 314–322. DOI:10.4236/ojss.2013.37036.
- 24. Kirk, G.J.D., Manwaring H.R., Ueda Y., Semwal V.K., Wissuwa M. 2022. Below-ground plant–soil interactions affecting adaptations of rice to iron toxicity. Plant, Cell & Environment, 45(3), 705–718. DOI:10.1111/pce.14199.
- 25. Le T.Q., van Mensvoort M.E.F. 2004. Decision trees for farm management on acid sulfate soils, Mekong Delta, Viet Nam. Australian Journal of Soil Research, 42, 671–684. DOI:10.1071/SR03083.
- 26. Le V.C. 1981. Rock phosphate in rice production on acid sulphate soils in Vietnam. Proceedings of the Bangkok symposium on acid sulphate soils: Second International Symposium on Acid Sulphate Soils, Bangkok, Thailand, 187–194.
- 27. Li G., Song H., Li B., Kronzucker H.J., Shi W. 2015. Auxin resistant1 and PIN-FORMED2 protect lateral root formation in Arabidopsis under iron stress. Plant Physiology, 169, 2608–2623. DOI:10.1104/pp.15.00904.
- 28. Mahender A., Swamy B.P., Anandan A., Ali J. 2019. Tolerance of iron-deficient and -toxic soil conditions in rice. Plants, 8(2), 31. DOI:10.3390/ plants8020031.
- 29. Marschner H. 1995. Functions of mineral nutrients. In Mineral Nutrition of Higher Plants, pp. 313–404. Academic Press, San Diego, CA, USA.
- 30. Matthus E., Wu L.-B., Ueda Y., Höller S., Becker M., Frei M. 2015. Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.). Theoretical and Applied Genetics, 128, 2085–2098. DOI:10.1007/s00122-015-2569-y
- 31. Melandri G., Sikirou M., Arbelaez J.D., Shittu A., Semwal V.K., et al. 2021. Multiple small-effect alleles of Indica origin enhance high iron-associated stress tolerance in rice under field conditions in West Africa. Frontiers in Plant Science, 11, 604938. DOI: 10.3389/fpls.2020.604938.
- 32. Moore P.A., Attanandana T., Patrick W.H. 1990. Factors affecting rice growth on acid sulfate soils. Soil Science Society of America Journal, 54(6), 1651–1656. DOI:10.2136/sssaj1990.03615995005400060024x.
- 33. Nozoe T., Agbisit R., Fukuta Y., Rodriguez R., Yanagihara S. 2004. The iron (Fe)-excluding power of rice roots as a mechanism of tolerance of elite breeding lines to iron toxicity. 4th International Crop Science Congress. http://www.cropscience. org.au/icsc2004/poster/3/6/4/741_yanagiharas. htm#TopOfPage. Accessed date 30 November 2023.
- 34. Onaga G., Edema R., Asea G. 2013. Tolerance of rice germplasm to iron toxicity stress and the relationship between tolerance, Fe2+, P and K content in the leaves and roots. Archives of Agronomy and Soil Science, 59, 213–229. DOI: 10.1080/03650340.2011.622751.
- 35. Panhwar Q.A., Naher U.A., Shamshuddin J., Radziah O., Hakeem K.R. 2016. Management of acid sulfate soils for sustainable rice cultivation in Malaysia. In: Hakeem K., Akhtar J., Sabir M. (eds). Soil Science: Agricultural and Environmental Prospectives. Springer, Cham. 91–104.
- 36. Pawar S., Pandit E., Mohanty I.C., Saha D., Pradhan S.K. 2021. Population genetic structure and association mapping for iron toxicity tolerance in rice. PLoS One, 16, e0246232. DOI:10.1371/journal.pone.0246232.
- 37. Quinet M., Vromman D., Clippe A., Bertin P., Lequeux H., Dufey I., Lutts S., Lefevre I. 2012. Combined transcriptomic and physiological approaches reveal strong differences between short- and longterm response of rice (Oryza sativa) to iron toxicity. Plant, Cell & Environment, 35(10), 1837–1859. DOI: 10.1111/j.1365-3040.2012.02521.x
- 38. Rasheed A., Hassan M.U., Aamer M., Bian J.M., Xu Z.R., He X.F., Yan G., Wu Z.M. 2020. Iron toxicity, tolerance and quantitative trait loci mapping in rice: a review. Applied Ecology And Environmental Research, 18, 7483–7498. DOI: 10.15666/ aeer/1806_74837498.
- 39. Rodenburg J., Zwartb S.J., Kiepe P., Narteh L.T., Dogbe W., Wopereis M.C.S. 2014. Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches. Agricultural Systems, 123, 1–11. DOI:10.1016/j. agsy.2013.09.004.
- 40. Rout G.R., Sahoo S. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1–24. DOI:10.7831/ras.3.1.
- 41. Sahrawat K. 2005. Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition, 27(8), 1471–1504. DOI:10.1081/PLN-200025869.
- 42. Sikirou M., Saito K., Achigan-Dako E.G., Dramé K.N., Adam A., Venuprasad R. 2015. Genetic improvement of iron toxicity tolerance in rice-progress, challenges and prospects in West Africa. Plant Production Science, 18, 423–434. DOI:10.1626/pps.18.423.
- 43. Sikirou M., Shittu A., Konaté K.A., Maji A.T., Ngaujah A.S., Sanni K.A., Ogunbayo S.A., Akintayo I., Saito K., Dramé K.N., Ahanchédé A., Venuprasad R. 2018. Screening African rice (Oryza glaberrima) for tolerance to abiotic stresses: I. Fe toxicity. Field Crops Research, 220, 3–9. DOI:10.1016/j.fcr.2016.04.016.
- 44. Stein R.J., Duarte G.L., Scheunemann L., Spohr M.G., Teixeira A., Ricachenevsky F.K., Rosa L.M., Zanchin N.I., Santos R.P., Fett J.P. 2019. Genotype variation in rice (Oryza sativa L.) tolerance to fe toxicity might be linked to root cell wall lignification. Frontiers in Plant Science, 10, 450911. DOI:10.3389/fpls.2019.00746.
- 45. Stein R.J., Duarte G.L., Spohr M.G., Lopes S.I.G., Fett J.P. 2009. Distinct physiological responses of two rice cultivars subjected to iron toxicity under f ield conditions. Annals of Applied Biology, 154, 269–277. DOI:10.1111/j.1744-7348.2008.00293.x.
- 46. Theerawitaya C., Wanchana S., Ruanjaichon V., Tisaram R., Samphumphuang T., Sotesaritkul T., Toojinda T. 2022. Determination of traits responding to iron toxicity stress at different stages and genomewide association analysis for iron toxicity tolerance in rice (Oryza sativa L.). Frontiers in Plant Science, 13, 994560. DOI: 10.3389/fpls.2022.994560.
- 47. Wu L., Shhadi M.Y., Gregorio G., Matthus E., Becker M., Frei M. 2014. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7, 8. DOI:10.1186/s12284-014-0008-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a71ae9aa-b44c-456f-b417-2d466d278131