PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Iron(II) modified natural zeolites for hexavalent chromium removal from contaminated water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three different types of Fe(II)-modified natural zeolites were tested as supports in continuous-flow columns for the treatment of Cr(VI) contaminated water. The natural zeolites chosen as support were commercially available Zeosand (80% clinoptilolite), ATZ (79% phillipsite/chabazite), and ZS-55RW (90% Chabazite). All the examined modified zeolites turned out active for hexavalent chromium abatement, lowering its concentration below the European regulation level, even at relatively high flow rates (40 mL/h, linear velocity 15 cm/h). Zeosand, having a broader pH range of stability, was found to be the best one in terms of both Fe(II) uptake (0.54 wt%) and Cr removal (90 mg Cr/Kg zeolite).
Rocznik
Strony
35--40
Opis fizyczny
Bibliogr. 55 poz., tab., wykr.
Twórcy
autor
  • Politecnico di Bari, Italy DICATECh
  • Politecnico di Bari, Italy DICATECh
  • Politecnico di Bari, Italy DICATECh
autor
  • Politecnico di Bari, Italy DICATECh
autor
  • Centro Ricerche Monterotondo, Italy ENI S.p.A. Refining and Marketing Division
autor
  • Centro Ricerche Monterotondo, Italy ENI S.p.A. Refining and Marketing Division
Bibliografia
  • [1]. Barrer, R.M. (1978). Zeolites and Clay Minerals as Sorbents and Molecular Sieves, London: Academic Press, London 1978.
  • [2]. Bowman, R.S. & Helferich, R. (2001). Production and article of iron/surfactant-modified zeolite pellets to retain and destroy water pollutants, U.S. Patent No. 6,261,986 B1, 17 July 2001. Washington, D.C.: U.S. Patent and Trademark Office.
  • [3]. Byrne, R.H., Luo, Y.-R. & Young, R.W. (2000). Iron hydrolysis and solubility revisited: observations and comments on iron hydrolysis characterizations, Marine Chemistry, 70, pp. 23–35.
  • [4]. Byrne, R.H., Yao, W., Luo, Y.-R. & Wang, B. (2005). The dependence of Fe(III) hydrolysis on ionic strength in NaCl solutions, Marine Chemistry, 97, pp. 34–48.
  • [5]. Campos, V., Morais, L.C. & Buchler, P.M. (2007). Removal of chromate from aqueous solution using treated natural zeolite, Environmental Geology, 52, pp. 1521–1525.
  • [6]. Dimirkou, A. & Doula, M.K. (2008). Use of clinoptilolite and an Fe-overexchanged clinoptilolite in Zn2+ and Mn2+ removal from drinking water, Desalination, 224, pp. 280–292.
  • [7]. Doula, M.K. (2007). Synthesis of a clinoptilolite–Fe system with high Cu sorption capacity, Chemosphere, 67, pp. 731–740.
  • [8]. Eary, L.E. & Rai, D. (1987). Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide, Environmental Science & Technology, 27, pp. 1187–1193.
  • [9]. Eary, L.E. & Rai, D. (1988). Chromate removal from aqueous wastes by reduction with ferrous ion, Environmental Science & Technology, 22, pp. 972–977.
  • [10]. Erdogan, B.C. & Ulku, S. (2012). Cr(VI) sorption by using clinoptilolite and bacteria loaded clinoptilolite rich mineral, Microporous Mesoporous Mater, 152, pp. 253–261.
  • [11]. Faghihian, H. & Bowman, R.S. (2005). Adsorption of chromate by clinoptilolite exchanged with various metal cations, Water Research, 39, pp. 1099–1104.
  • [12]. Fruchter, J. (2002). In situ treatment of chromium-contaminated groundwater, Environmental Science & Technology, 36, pp. 464A–472A.
  • [13]. Gode, F. & Pehlivan, E. (2005). Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins, Journal of Hazardous Materials, 119, pp. 175–182.
  • [14]. Hu, S.J., Buerge, I.J. & Weidler, P.G. (1997). Transformations of chromium in the environment, Analysis, 25, pp. 12–15.
  • [15]. Hwang, I., Batchelor, B., Schlautman, M.A. & Wang, R. (2002). Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids, Journal of Hazardous Materials, 92, pp. 143–159.
  • [16]. Inglezakis, V. J., Loizidou, M. D. & Grigoropoulou, H. P. (2003). Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake, Journal of Colloid and Interface Science, 261, pp. 49–54.
  • [17]. Kiser, J.R. & Manning, B.A. (2010). Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite, Journal of Hazardous Materials, 174, pp. 167–174.
  • [18]. Kotaś, J. & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation, Environmental Pollution, 107, pp. 263−283.
  • [19]. Leyva-Ramos, R., Jacobo-Azuara, A., Diaz-Flores, P.E., Guerrero-Coronado, R.M., Mendoza-Barron, J. & Berber-Mendoza, M.S. (2008). Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330, pp. 35–41.
  • [20]. Li, Z., Jones, H.K., Bowman, R.S. & Helferich, R. (1999). Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron, Environmental Science & Technology, 33, pp. 4326–4330.
  • [21]. Li, Z. (2006). Chromate transport through surfactant-modified zeolite columns, Groundwater Monitoring & Remediation, 26, pp. 117–124.
  • [22]. Li, Z., Jones, H.K., Zhang, P. & Bowman, R.S. (2007). Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets, Chemosphere, 68, pp. 1861–1866.
  • [23]. Liguori, B., Cassese, A. & Colell, A. (2006). Safe immobilization of Cr(III) in heat-treated zeolite tuff compacts, Journal of Hazardous Materials, 137, pp. 1206–1210.
  • [24]. Litz, J.E. (2006). Hexa-valent chromium removal from aqueous media using ferrous-form zeolite materials, U.S. Patent No. 7,105,087 B2, 12 September 2006. Washington, D.C.: U.S. Patent and Trademark Office.
  • [25]. Loyaux-Lawniczak, S., Lecomte, P. & Ehrhardt, J.-J. (2001). Behavior of hexavalent chromium in a polluted groundwater: redox processes and immobilization in soils, Environmental Science & Technology, 35, pp. 1350–1357.
  • [26]. Lu, G., Li, Z., Jiang, W.-T., Ackley, C., Fenske, N. & Demarco, N. (2013). Removal of Cr(VI) from water using Fe(II) modified natural zeolites, Chemical Engineering Research and Design, CHERD-1335, 92,2, pp. 384–390
  • [27]. Ludwig, R.D., Su, C., Lee, T.R., Wilkin, R.T., Acree, S. D., Ross, R.R. & Keeley, A. (2007). In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation, Environmental Science & Technology, 41, pp. 5299–5305.
  • [28]. Mackay, D.M. & Cherry, J.A. (1989). Groundwater contamination: pump-and-treat remediation, Environmental Science & Technology, 23, pp. 630–636.
  • [29]. Martin, T.A. & Kempton, J.H. (2000). In situ stabilization of metal-contaminated groundwater by hydrous ferric oxide: an experimental and modeling investigation, Environmental Science & Technology, 34, pp. 3229–3234.
  • [30]. Meir, M.V., Callejas, R.L., Gehr, R., Cisneros, B.E.J. & Alvarez, P.J.J. (2001). Heavy metal removal with Mexican clinoptilolite: Multi-component ionic exchange, Water Research, 35, pp. 373–378.
  • [31]. Misaelides, P., Zamboulis, D., Sarridis, P., Warchoł, J. & Godelitsas, A. (2008). Chromium (VI) uptake by polyhexamethylene-guanidine-modified natural zeolitic materials, Microporous and Mesoporous Materials, 108, pp. 162–167.
  • [32]. Ouki, S.K. & Kavannagh, M. (1999). Treatment of metals-contaminated wastewaters by use of natural zeolites, Water Science and Technology, 39, pp. 115–122.
  • [33]. Palmer, C.D. & Wittbrodt, P.R. (1991). Processes affecting the remediation of chromium-contaminated sites, Environmental Health Perspectives, 92, pp. 25–40.
  • [34]. Park, J.-B., Lee, S.-H., Lee, J.-W. & Lee, C.-Y. (2002). Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B), Journal of Hazardous Materials, 95, pp. 65–79.
  • [35]. Patterson, R.R., Fendorf, S. & Fendorf, M. (1997). Reduction of hexavalent chromium by amorphous iron sulphide, Environmental Science & Technology, 31, pp. 2039–2044.
  • [36]. Qin, G., Mcguire, M.J., Blute, N.K., Seidel, C. & Fong, L. (2005). Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: a pilot-scale study, Environmental Science & Technology, 39, pp. 6321–6327.
  • [37]. Rai, D., Sass, B.M. & Moore, D.A. (1987). Chromium(VI) hydrolysis constants and solubility of chromium hydroxide, Inorganic Chemistry, 26, pp. 345–349.
  • [38]. Rama Krishna, K. & Philip, L. (2005). Bioremediation of Cr(VI) in contaminated soils, Journal of Hazardous Materials, 121, pp. 109–117.
  • [39]. Rengaraj, S., Joo, C.K., Kim, Y. & Yi, J. (2003). Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H, Journal of Hazardous Materials, 102, pp. 257–275.
  • [40]. Rhodes, C.J. (2007). Zeolites: physical aspects and environmental applications, Annual Reports of the Progress of Chemistry C, 103, pp. 287–325.
  • [41]. Robson, H. (2001). Verified Syntheses of Zeolitic Materials, Elsevier Science B.V., Amsterdam, 2001.
  • [42]. Sass, B.M. & Rai, D. (1987). Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions, Inorganic Chemistry, 26, pp. 2228–2232.
  • [43]. Schlautman, M.A. & Han, I. (2001). Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems, Water Research, 35, pp. 1534–1546.
  • [44]. Sheta, A.S., Falatah, A.M., Al-Sewailem, M.S., Khaled, E.M., Sallam, A.S.H. (2003). Sorption characteristics of zinc and iron by natural zeolite and bentonite, Microporous and Mesoporous Materials, 61, pp. 127–136.
  • [45]. Stefánsson, A. (2007). Iron(III) hydrolysis and solubility at 25°C, Environmental Science & Technology, 41, pp. 6117–6123.
  • [46]. Sung, W. & Morgan, J.J. (1980). Kinetics and products of ferrous iron oxygenation in aqueous systems, Environmental Science & Technology, 14, pp. 561–568.
  • [47]. Tokunaga, T.K., Wan, J., Firestone, M.K., Hazen, T.C., Olson, K.R., Herman, D.J., Sutton, S.R. & Lanzirotti, A. (2003). In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment, Journal of Environmental Quality, 32, pp. 1641–1649.
  • [48]. Vignola, R., Sisto, R., Grillo, G., Cova, U. & Cesti, P. (2007). Process for the treatment of contaminated water by means of a bifunctional system consisting of iron and zeolites, International Patent WO 2007/054358 A1, 18 May 2007.
  • [49]. Vignola, R., Cova, U., Della Penna, G. & Sisto, R. (2008). Process for the treatment of contaminated water based on the use of apolar zeolites having different characteristics, U.S. Patent No. 7,341,665 B2, 11 March 2008. Washington, D.C.: U.S. Patent and Trademark Office.
  • [50]. Wingenfelder, U., Hansen, C., Furrer, G. & Schulin, R. (2005). Removal of heavy metals from mine waters by natural zeolites, Environmental Science & Technology, 39, pp. 4606–4613.
  • [51]. Wu, D., Sui, Y., He, S., Wang, X., Li, C. & Kong, H. (2008). Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash, Journal of Hazardous Materials, 155, pp. 415–423.
  • [52]. Yang, J.E., Kim, J.S., Ok, Y.S. & Yoo, K.R. (2007). Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons, Water Science and Technology, 55, pp. 197–202.
  • [53]. Zayed, A.M. & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation, Plant and Soil, 249, pp. 139–156.
  • [54]. Zeng, Y., Woo, H., Lee, G. & Park, J. (2010). Adsorption of Cr(VI) on hexadecylpyridinium bromide (HDPB) modified natural zeolites, Microporous Mesoporous Mater, 130, pp. 83–91.
  • [55]. Zhao, D., SenGupta, A.K. & Stewart, L. (1998). Selective removal of Cr(VI) oxyanions with a new anion exchanger, Industrial & Engineering Chemistry Research, 37, pp. 4383–4387.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a71ab3d8-ed9a-46b8-be49-4a678bfbc305
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.