PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the primary and secondary microseisms in the wavefield of the ambient noise recorded in northern Poland

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seasonal changes of the primary and secondary microseisms were analysed in the wavefield of the ambient noise recorded during the entire 2014 at the ‘‘13 BB star’’ array located in northern Poland, composed of thirteen, symmetrically arranged, broadband seismic stations. To that, spectral analysis, seismic interferometry, surface scalar wind speed distribution, and beamforming were used. Spectral analysis allowed to observe that a splitting of the secondary microseism peak was present in winter and autumn, and that the primary microseism peak was visible in spring, summer and autumn. Using seismic interferometry, the long-term characteristics of the noise wavefield were recognized. The seasonal variations of the secondary microseism source were described by means of the analysis of the surface scalar wind speed for each month. The splitting of the secondary peak was attributed to the interaction of a strong wind blowing from the North Sea with a weak wind blowing from the Baltic Sea. The seasonal variations of the primary microseism peak were characterized through the frequency-domain beamforming. The peak was identified during spring, summer and autumn, when the generated wavefield was coming from the Baltic Sea. The velocity of the wavefield was evaluated within the 2.0–5.0 km/s range. The described mechanism of generation of the microseisms, based on the interaction of the nearby winds, was found to be consistent with the models reported in the literature.
Czasopismo
Rocznik
Strony
915--929
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
autor
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Ul. Pasteura 5, 02-093 Warsaw, Poland
autor
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Ul. Pasteura 5, 02-093 Warsaw, Poland
Bibliografia
  • 1. Ardhuin F, Stutzmann E, Schimmel M, Mangeney A (2011) Ocean wave sources of seismic noise. J Geophys Res 116:C09004. https://doi.org/10.1029/2011JC006952
  • 2. Ardhuin F, Balanche A, Stutzmann E, Obrebski M (2012) From seismic noise to ocean wave parameters: general methods and validation. J Geophys Res 117(C5):C05002. https://doi.org/10.1029/2011JC007449
  • 3. Ardhuin F, Gualtieri L, Stutzmann E (2015) How ocean waves rock the earth: two mechanisms explain microseisms with periods 3–300 s. Geophys Res Lett 42:765–772. https://doi.org/10.1002/2014GL062782
  • 4. Behr Y, Townend J, Bowen M, Carter L, Gorman R, Brooks L, Bannister S (2013) Source directionality of ambient seismic noise inferred from three-component beamforming. J Geophys Res 118:240–248. https://doi.org/10.1029/2012JB009382
  • 5. Bensen G, Ritzwoller M, Barmin M, Levshin A, Lin F, Moschetti M, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
  • 6. Bromirski PD, Duennebier FK (2002) The near-coastal microseism spectrum: spatial and temporal wave climate relationships. J Geophys Res 107(B8):2166. https://doi.org/10.1029/2001JB000265
  • 7. Bromirski PD, Duennebier FK, Stephen RA (2005) Mid-ocean microseisms. Geochem Geophys Geosyst 6:Q04009. https://doi.org/10.1029/2004GC000768
  • 8. Bromirski PD, Stephen RA, Gerstoft P (2013) Are deep-ocean-generated surface-wave microseisms observed on land? J Geophys Res 118:3610–3629. https://doi.org/10.1002/jgrb.50268
  • 9. Buffoni C, Schimmel M, Sabbione NC, Rosa ML, Connon G (2018) Rayleigh waves from correlation of seismic noise in Great Island of Tierra del Fuego, Argentina: constraints on upper crustal structure. Geod Geodyn 9:2–12
  • 10. Campillo M (2006) Phase and correlation in random seismic fields and the reconstruction of the Green function. Pure appl Geophys 163:475–502. https://doi.org/10.1007/s00024-005-0032-8
  • 11. Cessaro RK (1994) Sources of primary and secondary microseisms. Bull Seism Soc Am 84:142–148Google Scholar
  • 12. Corela C, Silveira G, Matias L, Schimmel M, Geissler WH (2017) Ambient seismic noise tomography of SW Iberia integrating seafloor- and land-based data. Tectonophysics 700–701:131–149
  • 13. Derode A, Larose E, Tanter M, De Rosny J, Tourin A, Campillo M, Fink M (2003) Recovering the Green’s function from field to field correlations in an open scattering medium. J Acoust Soc Am 113:2973–2976
  • 14. Gal M, Reading AM, Ellingsen SP, Gualtieri L, Koper KD, Burlacu R, Tkalĉić H, Hemer MA (2015) The frequency dependence and locations of short-period microseisms generated in the southern ocean and west pacific. J Geophys Res 120:5764–5781. https://doi.org/10.1002/2015JB012210
  • 15. Gerstoft P, Tanimoto T (2007) A year of microseisms in southern California. Geophys Res Lett 34:L20304. https://doi.org/10.1029/2007GL031091
  • 16. Gimbert F, Tsai VC (2015) Predicting short-period, wind-wave-generated seismic noise in coastal regions. Earth Planet Sci Lett 426:280–292. https://doi.org/10.1016/j.epsl.2015.06.017
  • 17. Grad M, Polkowski M, Wilde-Píorko M, Suchcicki J, Arant T (2015) Passive seismic experiment “13 BB star” in the margin of the east European Craton, Northern Poland. Acta Geophys 63:352–373. https://doi.org/10.1515/acgeo-2015-0006
  • 18. Gualtieri L, Stutzmann E, Capdeville Y, Ardhuin F, Schimmel M, Mangeney A, Morelli A (2013) Modelling secondary microseismic noise by normal mode summation. Geophys J Int 193:1732–1745. https://doi.org/10.1093/gji/ggt090
  • 19. Gualtieri L, Stutzmann E, Farra V, Capdeville Y, Schimmel M, Ardhuin F, Morelli A (2014) Modelling the ocean site effect on seismic noise body waves. Geophys J Int 197:1096–1106. https://doi.org/10.1093/gji/ggu042
  • 20. Gualtieri L, Stutzmann E, Capdeville Y, Farra V, Mangeney A, Morelli A (2015) On the shaping factors of the secondary microseismic wavefield. J Geophys Res Solid Earth. https://doi.org/10.1002/2015JB012157
  • 21. Halliday D, Curtis A (2008) Seismic interferometry, surface waves, and source distribution. Geophys J Int 175:1067–1087. https://doi.org/10.1111/j.1365-246X.2008.03918.x
  • 22. Harmon N, Gerstoft P, Rychert AC, Abers GA, De La Cruz MS, Fischer KM (2008) Phase velocities from seismic noise using beamforming and cross-correlation in Costa Rica and Nicaragua. Geophys Res Lett 35:L19303. https://doi.org/10.1029/2008GL035387
  • 23. Hasselmann K (1963) A statistical analysis of the generation of microseisms. Rev Geophys 1:177–209
  • 24. Juretzek C, Hadziioannou C (2016) Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios. J Geophys Res 121:6741–6756. https://doi.org/10.1002/2016JB013017
  • 25. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis. Bull Am Meteor Soc 83:1631–1643
  • 26. Kedar S, Longuet-Higgins M, Webb F, Graham N, Clayton R, Jones C (2008) The origin of deep ocean microseisms in the North Atlantic Ocean. Proc R Soc A 464:777–793. https://doi.org/10.1098/rspa.2007.0277
  • 27. Kimman WP, Campman X, Trampert J (2012) Characteristics of seismic noise: fundamental and highermode energy observed in the northeast of the Netherlands. Bull Seismol Soc Am 102:1388–1399. https://doi.org/10.1785/0120110069
  • 28. Koper KD, Burlacu R (2015) The fine structure of double-frequency microseisms recorded by seismometers in North America. J Geophys Res Solid Earth 120:1677–1691. https://doi.org/10.1002/2014JB011820
  • 29. Koper KD, de Foy B, Benz H (2009) Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991–2007. J Geophys Res 114:B10310. https://doi.org/10.1029/2009JB006307
  • 30. Lacoss RT, Kelly EJ, Toksöz MN (1969) Estimation of seismic noise structure using arrays. Geophysics 34:21–38
  • 31. Landès M, Hubans F, Shapiro NM, Paul A, Campillo M (2010) Origin of deep ocean microseisms by using teleseismic body waves. J Geophys Res 115:B05302. https://doi.org/10.1029/2009JB006918
  • 32. Lepore S, Markowicz KM, Grad M (2016) Impact of wind on ambient noise recorded by seismic array in northern Poland. Geophys J Int 205:1406–1413. https://doi.org/10.1093/gji/ggw093
  • 33. Lepore S, Polkowski M, Grad M (2018) Crustal and uppermost mantle S-wave velocity below the East European Craton in northern Poland from the inversion of ambient-noise records. Int J Earth Sci. https://doi.org/10.1007/s00531-018-1587-9
  • 34. Li H, Bernardi F, Michelini A (2010) Surface wave dispersion measurements from ambient seismic noise analysis in Italy. Geophys J Int 180:1242–1252. https://doi.org/10.1111/j.1365-246X.2009.04476.x
  • 35. Lin CR, Kuo BY, Liang WT, Chi WC, Huang YC, Collins J, Wang CY (2010) Ambient noise and teleseismic signals recorded by ocean-bottom seismometers offshore Eastern Taiwan. Terr Atmos Ocean Sci 21:743–755. https://doi.org/10.3319/TAO.2009.09.14.01(T)
  • 36. Longuet-Higgins MS (1950) A theory on the origin of microseisms. Philos Trans R Soc London 243:1–35
  • 37. Mcnamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94:1517–1527
  • 38. Möllhoff M, Bean CJ (2016) Seismic noise characterization in proximity to strong microseism sources in the northeast Atlantic. Bull Seismol Soc Am 106:14. https://doi.org/10.1785/0120150204
  • 39. Obrebski MJ, Ardhuin F, Stutzmann E, Schimmel M (2012) How moderate sea states can generate loud seismic noise in the deep ocean. Geophys Res Lett 39:L11601. https://doi.org/10.1029/2012GL051896
  • 40. Obrebski M, Ardhuin F, Stutzmann E, Schimmel M (2013) Detection of microseismic compressional (P) body waves aided by numerical modeling of oceanic noise sources. J Geophys Res Solid Earth 118:4312–4324. https://doi.org/10.1002/jgrb.50233
  • 41. Peterson J (1993) Observations and modeling of seismic background noise. USGS open-file report 93-322, 95p
  • 42. Retailleau L, Shapiro NM, Guilbert J, Campillo M, Roux P (2014) Antipodal focusing of seismic waves observed with the USArray. Geophys J Int 199:1030–1042. https://doi.org/10.1093/gji/ggu309
  • 43. Romanowicz B (2002) Inversion of surface waves: a review. International Handb Earthquake Eng Seismol 81A:149–173
  • 44. Rost S, Thomas C (2002) Array seismology: methods and applications. Rev Geophys 40:1008. https://doi.org/10.1029/2000RG000100
  • 45. Roux P (2009) Passive seismic imaging with directive ambient noise: application to surface waves and the San Andreas Fault in Parkfield, CA. Geophys J Int 179:367–373. https://doi.org/10.1111/j.1365-246X.2009.04282.x
  • 46. Roux P, Sabra KG, Kuperman WA, Roux A (2005) Ambient-noise cross-correlation in free space: theoretical approach. J Acoust Soc Am 117:79–84
  • 47. Ruigrok E, Campman X, Wapenaar K (2011) Extraction of P-wave reflections from microseisms. C R Geosci 343:512–525. https://doi.org/10.1016/j.crte.2011.02.006
  • 48. Sabra KG, Gerstoft P, Roux P, Kuperman WA, Fehler MC (2005a) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett 32:L03310. https://doi.org/10.1029/2004GL021862
  • 49. Sabra KG, Roux P, Kuperman WA (2005b) Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide. J Acoust Soc Am 117:164–174
  • 50. Schimmel M, Stutzmann E, Ardhuin F, Gallart J (2011a) Polarized Earth’s ambient microseismic noise. Geochem Geophys Geosyst 12:Q07014. https://doi.org/10.1029/2011GC003661
  • 51. Schimmel M, Stutzmann E, Gallart J (2011b) Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophys J Int 184:494–506
  • 52. Schimmel M, Stutzmann E, Ventosa S (2017) Measuring group velocity in seismic noise correlation studies based on phase coherence and resampling strategies. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2016.2631445
  • 53. Schulte-Pelkum V, Earle PS, Vernon FL (2004) Strong directivity of ocean-generated seismic noise. Geochem Geophys Geosyst 5:Q03004. https://doi.org/10.1029/2003GC000520
  • 54. Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:L07614. https://doi.org/10.1029/2004GL019491
  • 55. Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res 111:B10306. https://doi.org/10.1029/2005JB004237
  • 56. Stutzmann E, Ardhuin F, Schimmel M, Mangeney A, Patau G (2012) Modeling long-term seismic noise in various environments. Geophys J Int 191:707–722. https://doi.org/10.1111/j.1365-246X.2012.05638.x
  • 57. Tanimoto T, Prindle K (2007) Surface wave analysis with beamforming. Earth Planets Space 59:453–458
  • 58. Van Tiggelen BA (2003) Green function retrieval and time reversal in a disordered world. Phys Rev Lett 91:243904
  • 59. Ventosa S, Schimmel M, Stutzmann E (2017) Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond. Geophys J Int 211:30–44
  • 60. Wapenaar K (2006) Green’s function retrieval by cross-correlation in case of one-sided illumination. Geophys Res Lett 33:L19304. https://doi.org/10.1029/2006GL027747
  • 61. Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophysics 71:SI33–SI46. https://doi.org/10.1190/1.2213955
  • 62. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79:579
  • 63. Yang Y, Ritzwoller MH (2008) The characteristics of ambient seismic noise as a source for surface wave tomography. Geochem Geophys Geosyst 9:Q02008. https://doi.org/10.1029/2007GC001814
  • 64. Yao H, van der Hilst RD (2009) Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys J Int 179:1113–1132. https://doi.org/10.1111/j.1365-246X.2009.04329.x
  • 65. Zhan Z, Tsai VC, Clayton RW (2013) Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophys J Int 194:1574–1581. https://doi.org/10.1093/gji/ggt170
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a719c079-49d7-40c2-83b5-e377a89ac44e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.