PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of Ultra Compact Optical T Flip Flop in Two Dimensional Photonic Crystals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research in the field of quantum electronics is gaining more momentum over the solid state physics device design. In the proposed research we have designed an ultra compact optical T flip-flop in two dimensional (2-D) photonic crystals (PhCs) on a rectangular lattice with 16 × 9 dielectric rods in air configuration. The principle mechanism used here is adding an extra input called reference input to achieve logic high for no power applied at the input of T flip-flop. The two junctions are created for guiding the light wave towards the output. The reference input and one refractive index varied dielectric rod placed near the junction to confine the ouput power along with T input. At the junction of the input-output we have used the constructive and destructive interference method to achieve maximum light confinement in the output. The plane wave expansion (PWE) method is used to compute the photonic band gap (PBG) and the finite difference time domain (FDTD) method is used to analyze electromagnetic (EM) wave propagation inside the waveguides. The time for input arrival at the output also significantly improved with reduction in the chip size. The response time for the proposed T flip-flop is 0.0049 ps and contrast ratio achieved is 13.60 dB with a chip area of 49.5 μm2.
Słowa kluczowe
Twórcy
  • School of Electrical and Communication Sciences, JSPM University, Maharashtra, India
autor
  • Department of ECE, Bheemanna Khandre Institute of Technology, Karnataka, India
  • School of Electrical & Communication Sciences, JSPM University Pune, Maharashtra, India
autor
  • Department of ECE, Guru Nanak Dev Engineering College, Karnataka, India
  • Department of ECE, K.C.T. Engineering College, Karnataka, India
Bibliografia
  • [1] S. Swarnakar, S. Rathi, and S. Kumar, “Design of all optical xorgate based on photonic crystal ring resonator,” Journal of Optical Communications, vol. 41, no. 1, pp. 51-56, 2019. [Online]. Available: https://doi.org/10.1515/joc-2017-0142
  • [2] A. Pashamehr, M. Zavvari, and H. Alipour-Banaei, “All-optical and/or/not logic gates based on photonic crystal ring resonators,” Frontiers of Optoelectronics, vol. 9, pp. 578-584, 2016. [Online]. Available: https://doi.org/10.1007/s12200-016-0513-7
  • [3] J. Bao, J. Xiao, L. Fan, X. Li, Y. Hai, T. Zhang, and C. Yang, “All-optical nor and nand gates based on photonic crystal ring resonator,” Optics communications, vol. 329, pp. 109-112, 2014. [Online]. Available: https://doi.org/10.1016/j.optcom.2014.04.076
  • [4] S. Kumar, L. Singh, and N.-K. Chen, “Design of all-optical universal gates using plasmonics mach-zehnder interferometer for wdm applications,” Plasmonics, vol. 13, pp. 1277-1286, 2018. [Online]. Available: https://doi.org/10.1007/s11468-017-0631-0
  • [5] K. Choudhary and S. Kumar, “Design of an optical or gate using mach-zehnder interferometers,” Journal of Optical Communications, vol. 39, no. 2, pp. 161-165, 2018. [Online]. Available: https://doi.org/10.1515/joc-2016-0131
  • [6] D. G. Sankar Rao, S. Swarnakar, and S. Kumar, “Performance analysis of all-optical nand, nor, and xnor logic gates using photonic crystal waveguide for optical computing applications,” Optical Engineering, vol. 59, no. 5, pp. 057 101-057 101, 2020. [Online]. Available: https://doi.org/10.1117/1.OE.59.5.057101
  • [7] B. R. Singh and S. Rawal, “Photonic-crystal-based all-optical not logic gate,” JOSA A, vol. 32, no. 12, pp. 2260-2263, 2015. [Online]. Available: https://doi.org/10.1364/JOSAA.32.002260
  • [8] M. V. Sonth, G. Srikanth, P. Agrawal, and B. Premalatha, “Basic logic gates in two dimensional photonic crystals for all optical device design,” International Journal of Electronics and Telecommunications, vol. 67, no. 2, pp. 247-261, 2021. [Online]. Available: https://doi.org/10.24425/ijet.2021.135972
  • [9] N. Nozhat and N. Granpayeh, “All-optical logic gates based on nonlinear plasmonic ring resonators,” Applied optics, vol. 54, no. 26, pp. 7944-7948, 2015. [Online]. Available: https://doi.org/10.1364/AO.54.007944
  • [10] M. V. Sonth, S. Gowre, N. Biradar, and B. Gadgay, “Design and simulation of and-or-invert logic for photonic integrated circuits,” in Information, Photonics and Communication: Proceedings of Second National Conference, IPC 2019. Springer, 2020, pp. 55-63. [Online]. Available: https://doi.org/10.1007/978-981-32-9453-0_6
  • [11] S. Soma, M. V. Sonth, and S. C. Gowre, “Tunable optical add/drop filter for cwdm systems using photonic crystal ring resonator,” Journal of Electronic Materials, vol. 48, pp. 7460-7464, 2019. [Online]. Available: https://doi.org/10.1007/s11664-019-07572-1
  • [12] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, “Slow light in ultra-compact photonic crystal decoder,” Applied Optics, vol. 58, no. 8, pp. 2050-2057, 2019.
  • [13] M. Maleki, M. Soroosh, and A. Mir, “Ultra-fast all-optical 2-to-4 decoder based on a photonic crystal structure,” Applied Optics, vol. 59, no. 18, pp. 5422-5428, 2020. [Online]. Available: https://doi.org/10.1364/AO.392933
  • [14] M. A. Mansouri-Birjandi and M. R. Rakhshani, “A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators,” Optik, vol. 124, no. 23, pp. 5923-5926, 2013. [Online]. Available: https://doi.org/10.1016/j.ijleo.2013.04.128
  • [15] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, “Application of photonic crystal ring resonators for realizing all optical demultiplexers,” Frequenz, vol. 72, no. 9-10, pp. 465-470, 2018. [Online]. Available: https://doi.org/10.1515/freq-2017-0272
  • [16] R. Talebzadeh, M. Soroosh, Y. S. Kavian, and F. Mehdizadeh, “Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities,” Optik, vol. 140, pp. 331-337, 2017. [Online]. Available: https://doi.org/10.1016/j.ijleo.2017.04.075
  • [17] M. V. Sonth, S. Soma, S. C. Gowre, and N. Biradar, “Modeling and optimization of optical half adder in two dimensional photonic crystals,” Journal of Electronic Materials, vol. 47, no. 7, pp. 4136-4139, 2018.
  • [18] M. V. Sonth, S. Soma, and S. C. Gowre, “Investigation of light behavior of all optical full adders in two-dimensional photonic crystals,” Microwave and Optical Technology Letters, vol. 63, no. 4, pp. 1304-1308, 2021. [Online]. Available: https://doi.org/10.1002/mop.32705
  • [19] T. Abdel Moniem, E. Seraj El Deen, and R. El Mayet, “Design of integrated all optical jk flip flop using 2d photonic crystals,” JES. Journal of Engineering Sciences, vol. 52, no. 4, pp. 62-72, 2024. [Online]. Available: https://doi.org/10.21608/jesaun.2024.278058.1320
  • [20] Y. Pugachov, M. Gulitski, and D. Malka, “Photonic crystal flip-flops: recent developments in all optical memory components,” Materials, vol. 16, no. 19, p. 6467, 2023.
  • [21] T. A. Moniem, E. S. El Deen, and R. El Mayet, “Design of integrated all optical jk flip flop using 2-d photonic crystals.” Journal of Engineering Sciences, vol. 52, no. 4, 2024. [Online]. Available: https://doi.org/10.21608/jesaun.2024.278058.1320
  • [22] Y. Pugachov, M. Gulitski, and D. Malka, “Design of all-optical d flip flop memory unit based on photonic crystal,” Nanomaterials, vol. 14, no. 16, p. 1321, 2024.
  • [23] S. Soma, M. V. Sonth, and S. C. Gowre, “Design of two-dimensional photonic crystal based ultra compact optical rs flip-flop,” Photonic Network Communications, vol. 43, no. 2, pp. 109-115, 2022. [Online]. Available: https://doi.org/10.1007/s11107-021-00955-7
  • [24] S. Kumar, G. Singh, A. Bisht, and A. Amphawan, “Design of d flip-flop and t flip-flop using mach-zehnder interferometers for high-speed communication,” Applied optics, vol. 54, no. 21, pp. 6397-6405, 2015.
  • [25] K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Optics Express, vol. 16, no. 15, pp. 11 405-11 410, 2008.
  • [26] K. M. Rao, P. S. Bharadwaj, S. M. Vali, N. Mahesh, and T. T. Sai, “Design of clocked hybrid (d/t) flip-flop through air hole paradigm photonic crystal,” Journal of VLSI circuits and systems, vol. 3, no. 2, pp. 21-33, 2021.
  • [27] H. Miyan, R. Agrahari, S. K. Gowre, P. K. Jain, and M. Mahto, “Computational study of 2d photonic crystal based biosensor for sars-cov-2 detection,” Measurement Science and Technology, vol. 34, no. 7, p. 074004, 2023. [Online]. Available: https://doi.org/10.1088/1361-6501/acc754
  • [28] D. G. S. Rao, V. Palacharla, S. Swarnakar, and S. Kumar, “Design of all-optical d flip-flop using photonic crystal waveguides for optical computing and networking,” Applied Optics, vol. 59, no. 23, pp. 7139-7143, 2020. [Online]. Available: https://doi.org/10.1364/AO.400223
  • [29] M. Valliammai, J. Mohanraj, T. Kanimozhi, and S. Sridevi, “Design of all-optical chalcogenide t-flip flop using photonic crystal waveguide,” in 2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2021, pp. 133-134. [Online]. Available: https://doi.org/10.1109/NUSOD52207.2021.9541504
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. VGST, Bangalore, Karnataka State, India under award no. VGST/K-FIST (L1) (2014-15)/ (2015-16)/373 has supported this work.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7194072-8f58-402a-80c7-c8e96effe775
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.