PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methane hazard during the closure of mine excavations in liquidated mine – numerical simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The closure of deep mines, featuring multi level seam extraction, lasts many years. During this time period, the ventilation system must ensure adequate working conditions, and ensure the safety and stability of fan operation in gas and fire hazards conditions. The analysis of air flows and methane inflows during the progress of mining mine excavations closure, is the primary object of the article. Execution of such analysis requires knowledge of the mining mine excavations’ closure schedule, the structure of the ventilation system under consideration, the values of the parameters describing the air flows delivered to the mine excavations, and the current characteristics of operating fans and predicted methane exhalation. A computer database, currently being updated by a mine ventilation department for the VentGraph-Plus computer software, has been used simulate the various ventilation scenarios experienced, during the final stage of closure, including the shutdown of the main fans and the backfilling of shafts. The results of case study, containing 2 variants of simulated examples, are presented in the form of diagrams of methane concentration changes in time at characteristic places of the mine. The completed simulations of ventilation processes during the closure of mine excavations and transfer of inflowing methane, indicate useful possibilities of the computational tool used.
Rocznik
Strony
525--538
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
Bibliografia
  • [1] Robinson, R., Mine gas hazards in the surface environment. Transactions of the Institution of Mining and Metallurgy, Section A, Mining Technology 109, 228-238 (2000). DOI: https://doi.org/10.1179/mnt.2000.109.3.228.
  • [2] Australian Department of Industry Tourism and Resources, Mine closure and completion. Queensland government, Australia (2006).
  • [3] Prokop P., Gas leak effects on environment of Ostrava basin, Proceedings of the 7th International Mine Ventilation Congress: June 17-22, Cracow, Katowice, EMAG (2001).
  • [4] Dvořáček J., Slivka V., Environmental and safety problems of Ostrava-Karviná district. Zeszyty Naukowe Politechniki Śląskiej, Seria Górnictwo, nr 260 s. 551-558. Gliwice, Wydawnictwo Politechniki Śląskiej (2004).
  • [5] Didier C., Postmining Management in France: Situation and Perspectives. Risk Anal. 29, 1347-1354. Wiley Online Library. Dostępny w: [Google Scholar] [CrossRef] [PubMed][Green Version] (2009).
  • [6] Tauziede C., Pokryszka Z., Barriere J.P., Risk assessment of gas emission at the surface of French abandoned coal mines and prevention techniques publication. Transactions of the Institutions of Mining and Metallurgy – Section A. Mining Technology 111, 3, 192-196 (2002). DOI: https://doi.org/10.1179/mnt.2002.111.3.192.
  • [7] Heikkinen P.M. et al., Mine Closure Handbook: Environmental Techniques for the Extractive Industries. Geological Survey of Finland, Technical Research Center of Finland. Outokumpu Oyj and Finnish Road Enterprise and Soil and Water Ltd.: Vammalan Kirjapaino Oy, Finland (2020). http://arkisto.gtk.fi/ej/ej74.pdf.
  • [8] Cowan W.R., Mackasey W.O., Robertson J., The Policy Framework in Canada for Mine Closure and Management of Long-Term Liabilities. Ottawa: National Orphaned – Abandoned Mines Initiative, ON, Canada, Cowan Minerals Ltd.: Sudbury, ON, Canada (2010) http://www.abandoned-mines.org/pdfs/ PolicyFramework Canfor MinClosureandMgmtLiabilities.pdf.
  • [9] U.S. Environmental Protection Agency, U.S. Abandoned coal mine methane recovery project opportunities. EPA430-R-08–002 (2008).
  • [10] Szlązak N., Obracaj D., Borowski M., Zagrożenie gazami kopalnianymi w obiektach budowlanych na terenach zlikwidowanych kopalń podziemnych. [Mine gas hazard in buildings in the areas of liquidated underground mines] Przegląd Górniczy 58 (7-8), 42-48 (2002).
  • [11] Pokryszka Z. et al., Gas Migration from Closed Coal Mines to the Surface. Risk assessment Methodology and Prevention Means. Symposium Post-Mining, November 16-17, Nancy (2005).
  • [12] Dziurzyński W. i in., Migracja gazów z szybu zlikwidowanej kopalni. W: Materiały 3 Szkoły Aerologii Górniczej, Zakopane 12-15 październik. Katowice, Wydawnictwo EMAG (2004).
  • [13] Jamróz P., Ligęza P., Socha K., Dynamic properties of hot-wire anemometric measurement circuits in the aspect of measurements in mine conditions. Archives of Mining Sciences 57, 3, 699-714 (2012). DOI: http://doi.org/10.2478/v10267-012-0045-y.
  • [14] Krause E., Pokryszka Z., Investigations on methane emission from flooded workings of closed coal mines. Journal of Sustainable Mining 12 (2), 40-45 (2013). DOI: http://doi.org/10.7424/jsm130206.
  • [15] Sechman H. et al., Distribution of methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization at the abandoned “Nowa Ruda” coal mine (Lower Silesian Coal Basin, SW Poland), International Journal of Coal Geology 116-117, 1-16 (2013). DOI: http://doi.org/10.1016/j.coal.2013.05.005.
  • [16] Wrona P., The influence of climate change on CO2 and CH4 concentration near closed shaft – numerical simulations. Arch. Min. Sci. 62 (3), 639-652 (2017). DOI: http://doi.org/10.1515/amsc-2017-0046.
  • [17] Wasilewski S., Jamróz P., Distribution of Methane Concentration in the Ventilating Area of the Longwall. Journal of Mining Science 54, 1004-1013 (2018). DOI: http://doi.org/10.1134/S1062739118065167.
  • [18] Dziurzyński W., Krawczyk,J., Grzywacz M., Analysis of Ventilation System and Assessment of Hazards in the Process of Progressing Liquidation of Workings in Mine. Proceedings of the 18th Symposium on Environmental Issues and Waste Management in Energy and Mineral Production. SWEMP 2018 – Selected Works. 6330 Cham: Springer (2019). DOI: https://doi.org/10.1007/978-3-319-99903-6_20.
  • [19] Duda A., Valverde G.F., Environmental and Safety Risks Related to Methane Emissions in Underground Coal Mine Closure Processes. Energies 13, 6312 (2020). DOI: https://doi.org/10.3390/en13236312.
  • [20] Dziurzyński W., Prognozowanie procesu przewietrzania kopalni głębinowej w warunkach pożaru podziemnego. Kraków: IGSMiE Studia Rozprawy Monografie, PAN, Tom 56 (1998).
  • [21] Gillies A.D.S., Wala A.M., Wu H.W., Simulation of the Effects of Inertisation of Fires on Mine Ventilation Systems. Proceedings of the Eighth International Mine Ventilation Congress Brisbane, Australia, s. 317-324. Carlton VIC3053: AusIMM (2005).
  • [22] Pritchard C.J., Validation of the Ventgraph program for use in metal/non-metal mines. Proceedings of the 13 th US Mine Ventilation Symposium, Sudbury, Kanada (2010).
  • [23] Jamróz P., Effect of the Continuous Traverse Trajectory and Dynamic Error of the Vane Anemometer on the Accuracy of Average Velocity Measurements at the Cross-Section of the Mine Heading – Model-Based Testing. Archives of Mining Sciences 59, 4, 1051-1060 (2014). DOI: https://doi.org/10.2478/amsc-2014-0072.
  • [24] Dziurzyński W., Pałka T., Krach A., Modele matematyczne programu VentGraph-Plus, Kraków: Wyd. IMG PAN. ISBN 978-83-953913-3-0 (2021).
  • [25] Dziurzyński W., Pałka T., Krach A., Podręcznik użytkownika programu VentGraph Plus z przykładami. Kraków: Wyd. IMG PAN. ISBN 978-83-953913-5-4 (2021).
  • [26] Dziurzyński W., Krawczyk J., Pałka T., Krach A., Wyłączenie przewietrzania kopalni Ruch „Anna”– symulacja numeryczna. Prace Instytutu Mechaniki Górotworu PAN 20, 3, 189-196 (2018).
  • [27] Karbownik M., Krawczyk J., Schlieter T., The unipore and bidisperse diffusion models for methane in hard coal solid structures related to the conditions in the upper silesian coal basin. Arch. Min. Sci. 65, 3, 591-603 (2020). DOI: https://doi.org/10.24425/ams.2020.134136.
  • [28] Karbownik M., Krawczyk J., Godyń K., Schlieter T., Šzcuzcka J., Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion. Energies 14, 24, 8495 (2021). DOI: https://doi.org/10.3390/en14248495.
  • [29] Szlązak N., Obracaj D., Korzec M., Estimation of Gas Loss in Methodology for Determining Methane Content of Coal Seams. Energies 14 (4), 982 (2021). DOI: https://doi.org/10.3390/en14040982.
  • [30] Duda A., Krzemień A., Forecast of methane emission from closed underground coal mines exploited by longwall mining – A case study of Anna coal mine. Journal of Sustainable Mining 17, 4, 184-194 (2018). DOI: https://doi.org/10.1016/j.jsm.2018.06.004.
  • [31] Krawczyk J., Janus J., Modeling of the Propagation of Methane from the Longwall Goaf, Performed by Means of a Two-Dimensional Description. Archives of Mining Sciences 59, 4, 851-868 (2014). DOI: https://doi.org/10.2478/amsc-2014-0059.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7185ccc-6295-4aae-b71b-e4a6dc85e7f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.