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Abstract. In this paper we consider an eigenvalue problem that involves a nonhomogeneous
elliptic operator, variable growth conditions and a potential V on a bounded domain in RN

(N ≥ 3) with a smooth boundary. We establish three main results with various assumptions.
The first one asserts that any λ > 0 is an eigenvalue of our problem. The second theorem
states the existence of a constant λ∗ > 0 such that any λ ∈ (0, λ∗] is an eigenvalue, while the
third theorem claims the existence of a constant λ∗ > 0 such that every λ ∈ [λ∗,∞) is an
eigenvalue of the problem.
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value.
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1. INTRODUCTION

Let Ω ⊂ RN (N ≥ 3) be a bounded domain with a smooth boundary ∂Ω. Consider
that ai : (0,∞)→ R, i ∈ {1, . . . , N}, are functions such that the mappings ϕi : R→ R,
i ∈ {1, . . . , N}, defined by

ϕi(t) =
{
ai(|t|)t, for t 6= 0,
0, for t = 0,

are odd, increasing homeomorphisms from R onto R, λ > 0 is a real number, V (x) is a
potential and q1, q2, m : Ω→ (2,∞) are continuous functions. This paper is devoted
to the study of the anisotropic eigenvalue problem{
−
∑N
i=1 ∂i(ϕi(∂iu)) + V (x)|u|m(x)−2u = λ(|u|q1(x)−2 + |u|q2(x)−2)u in Ω,

u = 0 on ∂Ω,
(1.1)

where the potential V : Ω→ R satisfies V ∈ Lr(x)(Ω) with r(x) ∈ C(Ω).
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Considering that the operator in the divergence form is nonhomogeneous we
introduce an Orlicz-Sobolev space setting for problems of type (1.1). In fact, given
that our problem contains an equation of anisotropic type, we seek weak solutions in
a more general Orlicz-Sobolev type space, namely an anisotropic Orlicz-Sobolev space.
At the same time we note the presence of the continuous exponent functions m, q1
and q2 which leads us to use a suitable variable exponent Lebesgue space setting.

We should note that, as the Orlicz spaces, denoted by LΦ(Ω), are a generalization
of the Lebesgue spaces Lp(Ω), so the Orlicz-Sobolev spaces, denoted by WmLΦ(Ω),
are a generalization of the Sobolev spaces Wm,p(Ω). Consequently, several properties
of Sobolev spaces have been extended to Orlicz-Sobolev spaces (see [2, 9, 10, 24]). Due
to the interest regarding the Orlicz-Sobolev spaces, motivated by their applicability
in many fields of mathematics, in the last decades there appeared many papers
involving such spaces. These spaces consist of functions which have weak derivatives
and fulfill some integrability conditions. The Orlicz-Sobolev spaces are used to model
various phenomena among which are the image restoration (see [6]), and modeling
of electrorheological fluids (see [1, 5, 12, 13, 18, 31]). Both applications are based on
variable exponent type Laplace operators.

In what follows we make a brief introduction for each of the following spaces:
Orlicz spaces, Orlicz-Sobolev spaces, anisotropic Orlicz-Sobolev spaces, and variable
exponent Lebesgue spaces.

We firstly recall some basic facts about Orlicz spaces. We refer to [2, 3, 7, 8, 14,15,
22,26] for more details.

Define

Φi(t) =
t∫

0

ϕi(s)ds, (Φi)∗(t) =
t∫

0

(ϕi)−1(s)ds for all t ∈ R, i ∈ {1, . . . , N}.

We notice that Φi, i ∈ {1, . . . , N}, are Young functions, that is, Φi(0) = 0, Φi

are convex, and limx→∞Φi(x) = +∞. Also, whereas Φi(x) = 0 if and only if
x = 0, limx→0

Φi(x)
x = 0, and limx→∞

Φi(x)
x = +∞, then Φi are called N-functions.

The functions (Φi)∗, i ∈ {1, . . . , N}, are called the complementary functions of Φi,
i ∈ {1, . . . , N}, and are defined as

(Φi)∗(t) = sup{st− Φi(s); s ≥ 0} for all t ≥ 0.

We observe that (Φi)∗, i ∈ {1, . . . , N}, are also N -functions. Furthermore, Young’s
inequality holds true:

st ≤ Φi(s) + (Φi)∗(t) for any s, t ≥ 0.

The Orlicz spaces LΦi(Ω), i ∈ {1, . . . , N} are the spaces of measurable functions
u : Ω→ R such that

‖u‖LΦi
:= sup


∫
Ω

uv dx;
∫
Ω

(Φi)∗(|v|)dx ≤ 1

 <∞.
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Thus, (LΦi(Ω), ‖ · ‖LΦi
), i ∈ {1, . . . , N}, are Banach spaces whose norms are equivalent

to the Luxemburg norms

‖u‖Φi := inf

k > 0;
∫
Ω

Φi
(
u(x)
k

)
dx ≤ 1

 .

Holder’s inequality in Orlicz spaces is as follows:∫
Ω

uv dx ≤ 2‖u‖LΦi
‖v‖L(Φi)∗

for any u ∈ LΦi(Ω) and v ∈ L(Φi)∗(Ω), i ∈ {1, . . . , N}.

Now, we are going to briefly describe the Orlicz-Sobolev spaces W 1LΦi(Ω),
i ∈ {1, . . . , N}, defined by

W 1LΦi(Ω) := {u ∈ LΦi(Ω); ∂xiu ∈ LΦi(Ω), i = 1, . . . , N} ,

which are Banach spaces endowed with the norms

‖u‖1,Φi := ‖u‖Φi + ‖|∇u|‖Φi , i ∈ {1, . . . , N}.

In addition, the Orlicz-Sobolev spaces W 1
0LΦi(Ω), i ∈ {1, . . . , N}, are the closure of

C1
0 (Ω) in W 1LΦi(Ω). By Lemma 5.7 in [15], we obtain that on W 1

0LΦi(Ω) can be
considered some equivalent norms

‖u‖i := ‖|∇u|‖Φi , i ∈ {1, . . . , N}.

Furthermore, the above norms are equivalent to the norms

‖u‖i,1 =
N∑
j=1
‖∂ju‖Φi , i ∈ {1, . . . , N}

(see Proposition 1 in [17]).
An important role in handling the Orlicz-Sobolev spaces is played by

(pi)0 := inf
t>0

tϕi(t)
Φi(t)

and (pi)0 := sup
t>0

tϕi(t)
Φi(t)

, i ∈ {1, . . . , N}.

In this paper we assume that for each i ∈ {1, . . . , N} we have

1 < (pi)0 ≤
tϕi(t)
Φi(t)

≤ (pi)0 <∞ for any t ≥ 0. (1.2)

The above inequalities imply that each Φi, i ∈ {1, . . . , N}, satisfies the ∆2-condition,
namely

Φi(2t) ≤ KΦi(t) for any t ≥ 0, (1.3)

where K is a positive constant (see Proposition 2.3 in [21]).
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We assume also that for each i ∈ {1, . . . , N} the function Φi satisfies the following
condition:

the function [0,∞) 3 t→ Φi(
√
t) is convex. (1.4)

The latter two conditions guarantee that for each i ∈ {1, . . . , N} the Orlicz
spaces LΦi(Ω) are uniformly convex spaces, and consequently reflexive Banach
spaces (see Proposition 2.2 in [21]). Therefore, the Orlicz-Sobolev spaces W 1

0LΦi(Ω),
i ∈ {1, . . . , N}, are reflexive Banach spaces, as well.

Next, we introduce the anisotropic Orlicz-Sobolev space W 1
0L→Φ

(Ω), as the closure
of C1

0 (Ω) under the norm

‖u‖→
Φ

=
N∑
i=1
|∂iu|Φi ,

where
→
Φ : Ω → RN denotes the vectorial function

→
Φ = (Φ1, . . . ,ΦN ). In [17] it was

argued that W 1
0L→Φ

(Ω) is a reflexive Banach space.

Now, we introduce
→
P 0,

→
P0 ∈ RN as

→
P 0 = ((p1)0, . . . , (pN )0),

→
P0 = ((p1)0, . . . , (pN )0),

and (P 0)+, (P0)+, (P0)− ∈ R+ as

(P 0)+ = max{(p1)0, . . . , (pN )0},
(P0)+ = max{(p1)0, . . . , (pN )0},
(P0)− = min{(p1)0, . . . , (pN )0}.

We also always assume that
N∑
i=1

1
(pi)0

> 1,

and define (P0)∗, P0,∞ ∈ R+ by

(P0)∗ = N∑N
i=1

1
(pi)0

− 1
, P0,∞ = max{(P0)+, (P0)∗}.

Finally, we recall some definitions and basic properties of Lebesgue spaces with
variable exponent. To the best of our knowledge, these spaces were introduced in the
literature for the first time in 1931 by Orlicz [25]. Then, Nakano continued (in the 1950s)
this survey in [23] with a systematic study of spaces with variable exponent (called
modular spaces), and later the investigation was carried on by Polish mathematicians
(see for instance Musielak [22]). Taking [16] as a starting point, where Kováčik and
Rákosník have analyzed the spaces Lp(x) and W k,p(x), respectively, many results were
obtained regarding this type of variable exponent spaces. Of the recent works, which
treat problems involving various classes of nonlinear equations in such spaces, or more
general, we find the papers [27,29,30], and the book [28].
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Set
C+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1

}
and denote, for every p ∈ C+(Ω),

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

For any p ∈ C+(Ω) we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u; u is a measurable real-valued function with

∫
Ω

|u|p(x)dx <∞

}
.

On this space we define the so-called Luxemburg norm

|u|p(x) = inf
{
µ > 0;

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)
dx ≤ 1

}

and emphasize that (Lp(·)(Ω), | · |p(·)) is a separable and reflexive Banach space. If
0 < |Ω| <∞ and p1, p2 ∈ C+(Ω) are variable exponents satisfying p1(x) ≤ p2(x) almost
everywhere in Ω, then there exists the continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1
p(x) + 1

p′(x) = 1.
For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the following Hölder-type inequality∣∣∣∣∣∣

∫
Ω

uv dx

∣∣∣∣∣∣ ≤
(

1
p−

+ 1
p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x) (1.5)

holds true.
Also, we define p(·)-modular of the Lp(·)(Ω) spaces, which is the mapping

ρp(·) : Lp(·)(Ω)→ R defined by

ρp(x)(u) =
∫
Ω

|u|p(x)dx.

If (un), u ∈ Lp(·)(Ω), then the following relations hold true:

|u|p(·) > 1⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·), (1.6)

|u|p(·) < 1⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·), (1.7)

|un − u0|p(·) → 0⇔ ρ(·)(un − u)→ 0. (1.8)

Look into [16] for more details of these facts and further properties of the variable
exponent Lebesgue spaces.
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2. THE MAIN RESULTS

In this paper we look for weak solutions of problem (1.1) in a subspace of the anisotropic
Orlicz-Sobolev space W 1

0L→Φ
(Ω), namely

E :=
{
u ∈W 1

0L→Φ
(Ω);

∫
Ω

|V (x)||u|m(x)dx < κ, with κ > 0 real constant
}
.

Define the functionals JV , I : E → R by

JV (u) =
∫
Ω

N∑
i=1

Φi(|∂iu|)dx+
∫
Ω

V (x)
m(x) |u|

m(x)dx,

I(u) =
∫
Ω

1
q1(x) |u|

q1(x)dx+
∫
Ω

1
q2(x) |u|

q2(x)dx.

By standard arguments, JV , I ∈ C1(E,R) and the Fréchet derivatives are given by

〈J ′V (u), v〉 =
∫
Ω

N∑
i=1

ai(|∂iu|)∂iu∂iv dx+
∫
Ω

V (x)|u|m(x)−2uv dx,

〈I ′(u), v〉 =
∫
Ω

|u|q1(x)−2uv dx+
∫
Ω

|u|q2(x)−2uv dx,

for all u, v ∈ E.
The energy functional corresponding to problem (1.1) is defined as Tλ : E → R,

Tλ(u) = JV (u)− λI(u).

It is obvious that Tλ ∈ C1(E,R) with

〈T ′λ(u), v〉 = 〈J ′V (u), v〉 − λ〈I ′(u), v〉

for all u, v ∈ E.
We say that λ ∈ R is an eigenvalue of problem (1.1) if and only if there exists

u ∈ E \ {0} a critical point of Tλ, or, in other words, weak solution of problem (1.1)
corresponding to the eigenvalue λ.

The main results of the present paper are given by the following three theorems.

Theorem 2.1. Assume that the functions q1, q2,m ∈ C(Ω) satisfy the hypothesis

2 < (P 0)+ < q−2 ≤ q
+
2 ≤ m− ≤ m+ ≤ q−1 ≤ q

+
1 < q+

1 · r−
′
< (P0)∗, (2.1)

where r−′ = r−

r−−1 . Then any λ > 0 is an eigenvalue of problem (1.1).
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Theorem 2.2. Assume that the functions q1, q2,m ∈ C(Ω) verify the condition

2 < q−2 ≤ q
+
2 ≤ q

−
1 ≤ q

+
1 ≤ m− ≤ m+ < m+ · r−′ < (P0)− ≤ (P0)∗, (2.2)

where r−′ = r−

r−−1 . Then there is λ∗ > 0 so that every λ ∈ (0, λ∗] is an eigenvalue of
problem (1.1).

Theorem 2.3. Assume that the functions q1, q2,m ∈ C(Ω) fulfill the hypothesis

2 < q−2 ≤ q
+
2 ≤ m− ≤ m+ ≤ q−1 ≤ q

+
1 < q+

1 · r−
′
< (P0)− ≤ (P0)∗, (2.3)

where r−′ = r−

r−−1 . Then there is λ∗ > 0 so that every λ ∈ [λ∗,∞) is an eigenvalue of
problem (1.1).

Remark 2.4. If in our problem we take q1(x) = q2(x) = q(x) for every x ∈ Ω and
V ≡ 0 for every x ∈ Ω, we obtain the problem dealt in [17]. Therefore, we are motivated
to state, for our more general problem, to a certain extent, some similar results to those
in paper [17], although in the present paper we encounter more technical difficulties.

3. PROOF OF THEOREM 2.1

We begin by proving two auxiliary lemmas.

Lemma 3.1. Assume that the hypothesis of Theorem 2.1 is satisfied. Then there exist
η > 0 and α > 0 such that Tλ(u) ≥ α > 0 for any u ∈ E with ‖u‖→

Φ
= η.

Proof. We have

Tλ(u) = JV (u)− λI(u)

=
∫
Ω

N∑
i=1

Φi(|∂iu|)dx+
∫
Ω

V (x)
m(x) |u|

m(x)dx

− λ
∫
Ω

(
1

q1(x) |u|
q1(x) + 1

q2(x) |u|
q2(x)

)
dx

≥
∫
Ω

N∑
i=1

Φi(|∂iu|)dx−
1
m−

∫
Ω

|V (x)||u|m(x)dx

− λ

q−2

∫
Ω

(
|u|q1(x) + |u|q2(x)

)
dx.

Now, taking into account that q2(x) ≤ m− ≤ m(x) ≤ m+ ≤ q1(x) we obtain

|u(x)|m(x) ≤ |u(x)|m
−

+ |u(x)|m
+
≤ 2

(
|u(x)|q1(x) + |u(x)|q2(x)

)
for all x ∈ Ω, u ∈ E.
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On the other hand, since q−i ≤ qi(x) ≤ q+
i , i = 1, 2, we derive that

|u(x)|q1(x)+|u(x)|q2(x) ≤ |u(x)|q
−
1 +|u(x)|q

+
1 +|u(x)|q

−
2 +|u(x)|q

+
2 for all x ∈ Ω, u ∈ E.

Therefore, we get

Tλ(u) ≥
∫
Ω

N∑
i=1

Φi(|∂iu|)dx−
2
m−

∫
Ω

|V (x)|
(
|u|q

−
1 + |u|q

+
1 + |u|q

−
2 + |u|q

+
2

)
dx

− λ

q−2

∫
Ω

(
|u|q

−
1 + |u|q

+
1 + |u|q

−
2 + |u|q

+
2

)
dx.

Further, the inequalities q±i ≤ q
±
i ·r−

′
, i = 1, 2, lead us to the fact that the embeddings

Lq
±
i
·r−′(Ω) ⊂ Lq±i (Ω) are continuous, thus there exists Cij > 1, i, j = 1, 2, constants

such that
|u|q±

i
≤ Cij |u|q±

i
·r−′ , i, j = 1, 2, for all u ∈ Lq

±
i
·r−′(Ω).

Since V ∈ Lr(x)(Ω), it is obvious that V ∈ Lr−(Ω), as well. Hence, by Hölder-type
inequality (1.5) we obtain∫

Ω

|V (x)||u|q
±
i dx ≤ 2|V |r− |u|q±

i
·r−′ , i = 1, 2.

Then, we arrive at

Tλ(u) ≥
∫
Ω

N∑
i=1

Φi(|∂iu|)dx−
4|V |r−
m−

(
|u|q

−
1
q−1 ·r−

′ + |u|q
+
1
q+
1 ·r−

′ + |u|q
−
2
q−2 ·r−

′ + |u|q
+
2
q+
2 ·r−

′

)
− C0

(
|u|q

−
1
q−1 ·r−

′ + |u|q
+
1
q+
1 ·r−

′ + |u|q
−
2
q−2 ·r−

′ + |u|q
+
2
q+
2 ·r−

′

)
≥
∫
Ω

N∑
i=1

Φi(|∂iu|)dx− C
(
|u|q

−
1
q−1 ·r−

′ + |u|q
+
1
q+
1 ·r−

′ + |u|q
−
2
q−2 ·r−

′ + |u|q
+
2
q+
2 ·r−

′

)
,

where C0 = λ
q−2

max
{
C
q−1
11 , C

q+
1

12 , C
q−2
21 , C

q+
2

22

}
. In the same time, by (2.1) we have

2 < (P 0)+ < q±i · r
−′ < (P0)∗ = max{(P0)+, (P0)∗} = P0,∞.

Consequently, using Lemma 1 in [17], we get that there exists Bij > 1, i, j = 1, 2,
constants such that

|u|q±
i
·r−′ ≤ Bij‖u‖→Φ , i, j = 1, 2, for all u ∈ E.

So, we can see that

Tλ(u) ≥
∫
Ω

N∑
i=1

Φi(|∂iu|)dx−
(
B′11‖u‖

q−1
→
Φ

+B′12‖u‖
q+
1
→
Φ

+B′21‖u‖
q−2
→
Φ

+B′22‖u‖
q+
2
→
Φ

)
,
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where B′ij , i, j = 1, 2, are positive constants. Next, we focus our attention on the
case when u ∈ E and ‖u‖→

Φ
< 1. For such an element u, we have ‖∂iu‖Φi < 1, for all

i ∈ {1, . . . , N}. By a similar relation to the third relation of Lemma 1 in [19] we obtain

N∑
i=1
‖∂iu‖(pi)

0

Φi ≤
N∑
i=1

∫
Ω

Φi(|∂iu|)dx for all u ∈ E, with ‖u‖→
Φ
< 1. (3.1)

Using the Jensen’s inequality, applied to the convex function a : R+ → R+,
a(t) = t(P

0)+ , (P 0)+ > 2, we obtain

‖u‖(P
0)+

→
Φ

N (P 0)+−1 = N

(
N∑
i=1

1
N
‖∂iu‖Φi

)(P 0)+

≤
N∑
i=1
‖∂iu‖(P

0)+
Φi ≤

N∑
i=1
‖∂iu‖(pi)

0

Φi ≤
N∑
i=1

∫
Ω

Φi(|∂iu|)dx.

(3.2)

By (3.1) and (3.2), we arrive at

Tλ(u) ≥
‖u‖(P

0)+
→
Φ

N (P 0)+−1 −
(
B′11‖u‖

q−1
→
Φ

+B′12‖u‖
q+
1
→
Φ

+B′21‖u‖
q−2
→
Φ

+B′22‖u‖
q+
2
→
Φ

)
=
(

1
N (P 0)+−1 −B

′
11‖u‖

q−1 −(P 0)+
→
Φ

−B′12‖u‖
q+
1 −(P 0)+
→
Φ

−B′21‖u‖
q−2 −(P 0)+
→
Φ

−B′22‖u‖
q+
2 −(P 0)+
→
Φ

)
· ‖u‖(P

0)+
→
Φ

for any u ∈ E, with ‖u‖→
Φ
< 1.

Let g : [0, 1]→ R be the function defined by

g(t) = 1
N (P 0)+−1 −B

′
11t

q−1 −(P 0)+ −B′12t
q+
1 −(P 0)+ −B′21t

q−2 −(P 0)+ −B′22t
q+
2 −(P 0)+ .

It is clear that g is positive in a neighbourhood of the origin, such that the choice of
ρ∈(0, 1) is so small that α=ρ(P 0)+g(ρ)>0 and this completes the proof of lemma.�

Lemma 3.2. Assume that the hypothesis of Theorem 2.1 is verified, and let η given
in Lemma 3.1. Then there exists e ∈ E with ‖e‖→

Φ
> η such that Tλ(e) < 0.
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Proof. Let Ψ ∈ C∞0 (Ω), Ψ ≥ 0 and Ψ 6≡ 0, be fixed and let t > 1. By a similar
inequality to (11) in [19] we see that

Φi(t|∂iΨ|) ≤ t(pi)
0
Φi(|∂iΨ|) ≤ t(P

0)+Φi(|∂iΨ|) for all i ∈ {1, . . . , N}.

Accordingly, we can write

Tλ(tΨ) =
∫
Ω

N∑
i=1

Φi(|∂i(tΨ)|)dx+
∫
Ω

V (x)
m(x) |tΨ|

m(x)dx

− λ

(∫
Ω

1
q1(x) |tΨ|

q1(x)dx+
∫
Ω

1
q2(x) |tΨ|

q2(x)dx

)

≤ t(P
0)+

∫
Ω

Φi(|∂iΨ|)dx+ tm
+

m−

∫
Ω

|V (x)||Ψ|m(x)dx

− λtq
−
1

q+
1

∫
Ω

|Ψ|q1(x)dx− λtq
−
2

q+
2

∫
Ω

|Ψ|q2(x)dx.

By (2.1), it is clear that

lim
t→∞

Tλ(tΨ) = −∞.

Thus, for t > 1 sufficiently large, we can take e = tΨ so that ‖e‖→
Φ
> η and Tλ(e) < 0,

that is what we wanted to show. �

Proof of Theorem 2.1. Taking account of Lemma 3.1 and Lemma 3.2 and the mountain
pass theorem (see [4] with the variant given by Theorem 1.15 in [33]) we obtain the
existence of a sequence (un) ⊂ E such that

Tλ(un)→ c̄ > 0 and T ′λ(un)→ 0 (in E∗) as n→∞. (3.3)

We are looking to prove that (un) is bounded in E. For this, we assume by contradiction
that passing eventually to a subsequence, labeled again by (un), we have ‖un‖→

Φ
→∞
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and ‖un‖→
Φ
> 1 for all n. Keeping in mind the above and relation (3.3) we deduce that

for any n sufficiently large we have

1 + c̄+ ‖un‖→
Φ

≥ Tλ(un)− 1
q−2
〈T ′λ(un), un〉

=
∫
Ω

N∑
i=1

Φi(|∂iun|)dx+
∫
Ω

V (x)
m(x) |un|

m(x)dx

− λ
∫
Ω

(
1

q1(x) |un|
q1(x) + 1

q2(x) |un|
q2(x)

)
dx

− 1
q−2

∫
Ω

N∑
i=1

ai(|∂iun|)|∂iun|2dx−
1
q−2

∫
Ω

V (x)|un|m(x)dx

+ λ

q−2

∫
Ω

(
|un|q1(x) + |un|q2(x)

)
dx

≥
∫
Ω

N∑
i=1

Φi(|∂iun|)dx−
1
m−

∫
Ω

|V (x)||un|m(x)dx− λ

q−2

∫
Ω

(
|un|q1(x) + |un|q2(x)

)
dx

− 1
q−2

∫
Ω

N∑
i=1

ϕi(|∂iun|)∂iundx−
1
q−2

∫
Ω

|V (x)||un|m(x)dx

+ λ

q−2

∫
Ω

(
|un|q1(x) + |un|q2(x)

)
dx

=
∫
Ω

N∑
i=1

Φi(|∂iun|)dx−
1
q−2

∫
Ω

N∑
i=1

ϕi(|∂iun|)∂iundx

−
(

1
m−

+ 1
q−2

)∫
Ω

|V (x)||un|m(x)dx

≥
∫
Ω

N∑
i=1

Φi(|∂iun|)dx−
1
q−2

∫
Ω

N∑
i=1

ϕi(|∂iun|)∂iundx− κ.

Next, taking into consideration the definitions of (pi)0, i ∈ {1, . . . , N}, and (P 0)+ we
can write

(P 0)+ ≥ (pi)0 ≥ |∂iun|ϕi(|∂iun|)Φi(|∂iun|)
for all i ∈ {1, . . . , N}.
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Hence, we have

1 + c̄+ ‖un‖→
Φ
≥
∫
Ω

N∑
i=1

Φi(|∂iun|)dx−
(P 0)+

q−2

∫
Ω

N∑
i=1

Φi(|∂iun|)dx− κ

=
(

1− (P 0)+

q−2

)∫
Ω

N∑
i=1

Φi(|∂iun|)dx− κ.

By using the Jensen’s inequality for the convex function b : R+ → R+, b(t) = t(P0)− ,
(P0)− > 2, we get

‖un‖(P0)−
→
Φ

N (P0)−−1 = N

(∑N
i=1 ‖∂iun‖Φi

N

)(P0)−

≤
N∑
i=1
‖∂iun‖(P0)−

Φi . (3.4)

On the other hand, let

αi,n =
{

(P 0)+, if ‖∂iun‖ < 1,
(P0)−, if ‖∂iun‖ > 1.

That being defined we apply inequalities (C.9) and (C.10) in [8], then take into account
relation (3.4) to see that

1 + c̄+ ‖un‖→
Φ

≥
(

1− (P 0)+

q−2

) N∑
i=1
‖∂iun‖

αi,n
Φi − κ

=
(

1− (P 0)+

q−2

) N∑
i=1
‖∂iun‖(P0)−

Φi −
∑

{i; αi,n=(P 0)+}

(
‖∂iun‖(P0)−

Φi − ‖∂iun‖(P
0)+

Φi

)− κ
≥
(

1− (P 0)+

q−2

)(
1

N (P 0)−−1 ‖un‖
(P0)−
→
Φ

−N
)
− κ.

Now, we divide by ‖un‖(P0)−
→
Φ

and obtain

1 + c̄

‖un‖(P0)−
→
Φ

+ 1
‖un‖(P0)−−1

→
Φ

≥ 1
N (P0)−−1

(
1− (P 0)+

q−2

)

− N

‖un‖(P0)−
→
Φ

(
1− (P 0)+

q−2

)
− κ

‖un‖(P0)−
→
Φ

.

Passing to the limit as n→∞ we obtain a contradiction. It results that (un) is bounded
in E. This together with the fact that E is reflexive mean that there is a subsequence
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of (un), labeled again by (un), and an element u0 ∈ E such that un ⇀ u0 in E. On the
other hand, the embeddings E ⊂ Lqi(·)(Ω), i = 1, 2, are compact and thus un → u0 in
Lqi(·)(Ω), i = 1, 2. Thus, using the Hölder-type inequality (1.5), we deduce that∫

Ω

|un|qi(x)−2un(un − u0)dx −→
n→∞

0, i = 1, 2. (3.5)

Given the definition of the subspace E ⊂ W 1
0L→Φ

(Ω), we can easily see that
V (x)|un|m(x)−1 ∈ Lm′(x)(Ω). But the embedding Lm′(x)(Ω) ⊂ Lq′1(x)(Ω) is continuous,
so V (x)|un|m(x)−1 ∈ Lq′1(x)(Ω). Therefore, using again the Hölder-type inequality (1.5),
we find that∫

Ω

V (x)|un|m(x)−2un(un − u0)dx ≤ 2
∣∣∣V (x)|un|m(x)−1

∣∣∣
q′1(x)

|un − u0|q1(x) −→
n→∞

0.

(3.6)
By relations (3.3), (3.5) and (3.6), we obtain

N∑
i=1

∫
Ω

ai(|∂iun|)∂iun(∂iun − ∂iu0)dx −→
n→∞

0.

Taking into consideration that un ⇀ u0 in E, by the above relation we infer that∫
Ω

(ai(|∂iun|)∂iun − ai(|∂iu0|)∂iu0)(∂iun − ∂iu0)dx −→
n→∞

0. (3.7)

Then, considering relation (3.7), the same arguments used at the end of Theorem 1 in
[17] lead us to

N∑
i=1

∫
Ω

Φi
(∣∣∣∣∂iun − ∂iu0

2

∣∣∣∣) dx −→n→∞ 0, (3.8)

which means that un → u0 in E. This, together with (3.3) show that

Tλ(u0) = c̄ > 0 and T ′λ(u0) = 0.

In other words u0 ∈ E is a nontrivial weak solution of problem (1.1). �

4. PROOF OF THEOREM 2.2

We start by showing two auxiliary results.

Lemma 4.1. Assume that the hypothesis of Theorem 2.2 is satisfied. Then there exists
λ∗ > 0 so that for every λ ∈ (0, λ∗] there exist ρ, a > 0 such that Tλ(u) ≥ a > 0 for
any u ∈ E with ‖u‖→

Φ
= ρ.
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Proof. Using the hypothesis (2.2), Lemma 1 in [17] shows that the embeddings

E ⊂ Lm
±·r−′(Ω) ⊂ Lqi(·)(Ω), i = 1, 2, (4.1)

are continuous. Hence, it follows that there is a constant C1 > 0 such that

|u|q1(·) ≤ C1‖u‖→
Φ

for all u ∈ E. (4.2)

We fix ρ ∈ (0, 1) such that ρ < 1
C1

. Then, relation (4.2) implies that

|u|q1(·) < 1 for all u ∈ E, with ‖u‖→
Φ

= ρ. (4.3)

Taking into account relations (4.3), (1.7) and (4.2) it results that∫
Ω

|u|q1(x)dx ≤ Cq
−
1

1 ‖u‖
q−1
→
Φ
, for all u ∈ E, with ‖u‖→

Φ
= ρ. (4.4)

Similar arguments to those used in the proof of Lemma 3.1 show that there are some
constants Ci,j > 1, i, j = 1, 2, so that∫

Ω

1
q1(x) |u|

q1(x)dx+
∫
Ω

1
q2(x) |u|

q2(x)dx

≤ 1
q−2

(
C
q−1
11 ‖u‖

q−1
→
Φ

+ C
q+
1

12 ‖u‖
q+
1
→
Φ

+ C
q−2
21 ‖u‖

q−2
→
Φ

+ C
q+
2

22 ‖u‖
q+
2
→
Φ

)

≤ 4cq
+
1

0
q−2
‖u‖q

−
2
→
Φ
,

(4.5)

where c0 = max{C11, C12, C21, C22}. Also, relation (4.1) provides the existence of some
constants c1, c2 > 1 such that∫

Ω

|V (x)||u|m(x)dx ≤
∫
Ω

|V (x)|
(
|u|m

−
+ |u|m

+
)
dx

≤ |V |r−
(
|u|m

−

m−·r−′ + |u|m
+

m+·r−′
)

≤ cm
+
|V |r−

(
‖u‖m

−
→
Φ

+ ‖u‖m
+

→
Φ

)
≤ 2cm

+
|V |r−‖u‖m

−
→
Φ
,

(4.6)

where c = max{c1, c2}.
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Therefore, by (3.2), (4.5) and (4.6) we deduce that

Tλ(u) ≥ ρ(P 0)+

N (P 0)+−1 −
2cm+ |V |r−

m−
ρm
−
− 4λcq

+
1

0
q−2

ρq
−
2

≥ ρq
−
2

(
1

N (P 0)+−1 ρ
(P 0)+−q−2 − 2cm+ |V |r−

m−
ρm
−−q−2 − 4λcq

+
1

0
q−2

)
.

(4.7)

By setting the number

λ∗ = q−2

8cq
+
1

0 N (P 0)+−1
ρ(P 0)+−q−2 − cm

+
q−2 |V |r−

2cq
+
1

0 m−
ρm
−−q−2 (4.8)

we get that for any λ ∈ (0, λ∗] and u ∈ E with ‖u‖→
Φ

= ρ the number a = ρ(P0)+

2N(P0)+−1

is such that

Tλ(u) ≥ a > 0,

and this completes the proof of the lemma. �

Lemma 4.2. Assume that the condition of Theorem 2.2 is verified. Then there is
θ ∈ E such that θ ≥ 0, θ 6≡ 0 and Tλ(tθ) < 0 for t > 0 sufficiently small.

Proof. Firstly, we show that

Φi(σ`) ≤ σ(pi)0Φi(`) for all ` > 0, σ ∈ (0, 1), and i ∈ {1, . . . , N}. (4.9)

Let σ ∈ (0, 1) be fixed. Using the definition of (pi)0, we have

log(Φi(`))− log(Φi(σ`)) =
`∫

σ`

ϕi(s)
Φi(s)

ds ≥
`∫

σ`

(pi)0

s
ds

= − log
(
σ(pi)0

)
for all i ∈ {1, . . . , N},

that is, the relation (4.9) is true.
Next, from hypothesis (2.2) we obviously have q−1 ≤ m−. Let ε > 0 be so that

q−1 + ε ≤ m−. In the same time, the fact that q1 ∈ C(Ω) yields the existence of an
open nonempty set ω ⊂ Ω so that |q1(x)− q−1 | < ε for all x ∈ ω. Or, in another train
of thoughts, we have q1(x) < q−1 + ε ≤ m− for all x ∈ ω.

On the other hand, let θ ∈ C∞0 (Ω) be such that supp(θ) ⊃ ω, θ(x) = 1 for all
x ∈ ω, and θ(x) ∈ [0, 1] for all x ∈ Ω.
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The above piece of information and relation (4.9) lead us to

Tλ(tθ) = JV (tθ)− λI(tθ)

=
∫
Ω

N∑
i=1

Φi(t|∂iθ|)dx+
∫
Ω

tm(x)V (x)
m(x) |θ|m(x)dx

− λ
∫
Ω

(
tq1(x)

q1(x) |θ|
q1(x) + tq2(x)

q2(x) |θ|
q2(x)

)
dx

≤ t(P0)−
N∑
i=1

∫
Ω

Φi(|∂iθ|)dx+ tm
−

m−

∫
Ω

|V (x)||θ|m(x)dx

− λtq
−
1 +ε

q+
1

∫
ω

(
|θ|q1(x) + |θ|q2(x)

)
dx

< tm
−

 N∑
i=1

∫
Ω

Φi(|∂iθ|)dx+ 1
m−

∫
Ω

|V (x)||θ|m(x)dx


− λtq

−
1 +ε

q+
1

∫
ω

(
|θ|q1(x) + |θ|q2(x)

)
dx.

Consequently,
Tλ(tθ) < 0,

for t < ρ1/(m−−q−1 −ε) with

0 < δ < min

1,

λ
q+
1

∫
ω

(
|θ|q1(x) + |θ|q2(x)) dx∑N

i=1
∫
Ω

Φi(|∂iθ|)dx+ 1
m−

∫
Ω
|V (x)||θ|m(x)dx

 .

The above fraction is meaningful if we have
∑N
i=1
∫
Ω

Φi(|∂iθ|)dx > 0. Indeed, it is

evident that

0 < |ω| =
∫
ω

1dx =
∫
ω

|θ|q1(x)dx ≤
∫
Ω

|θ|q1(x)dx ≤
∫
Ω

|θ|q
−
1 dx = |θ|q

−
1
q−1
≤ cq

−
1 ‖θ‖q

−
1
→
Φ
,

where c > 0 is the constant given by the continuous embedding E ⊂ Lq−1 (Ω). Hence,
we obtain that ‖θ‖→

Φ
> 0.

Now, we focus our attention on the case when θ ∈ E so that ‖θ‖→
Φ
< 1, obtaining

the fact that ‖∂iθ‖Φi < 1, for all i ∈ {1, . . . , N}. Therefore, by relation (3.2) we arrive
at
∑N
i=1
∫

Ω Φi(|∂iθ|)dx > 0, which completes the proof. �
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Proof of Theorem 2.2. Let λ∗ > 0 be as in (4.8) and λ ∈ (0, λ∗]. By Lemma 4.2 we
derive that there exists θ ∈ E such that Tλ(tθ) < 0 for every t > 0 sufficiently small.
At the same time, by Lemma 4.1 it results that on the ball Bρ(0) we have

inf
∂Bρ(0)

Tλ > 0.

These together with inequality (4.7) and hypothesis (2.2) imply

−∞ < c := inf
Bρ(0)

Tλ < 0. (4.10)

Now, we let 0 < ε < inf∂Bρ(0) Tλ−infBρ(0) Tλ and apply Ekeland’s variational principle
(see [11]) to the functional Tλ : Bρ(0)→ R obtaining uε ∈ Bρ(0) so that

Tλ(uε) ≤ inf
Bρ(0)

Tλ + ε,

Tλ(uε) < Tλ(u) + ε‖u− uε‖→
Φ
, u 6= uε.

Then, we infer the following inequalities:

Tλ(uε) ≤ inf
Bρ(0)

Tλ + ε ≤ inf
Bρ(0)

Tλ + ε < inf
∂Bρ(0)

Tλ,

meaning that uε ∈ Bρ(0). Next, we define Λ : Bρ(0) → R by Λ(u) = Tλ(u)+
ε‖u− uε‖→

Φ
. We have

Λ(uε) = Tλ(uε) < Tλ(u) + ε‖u− uε‖→
Φ

= Λ(u), u 6= uε.

It results that uε is a minimum point of Λ, whence

Λ(uε + tv)− Λ(uε)
t

≥ 0 for small t > 0 and every v ∈ Bρ(0).

This shows that
Tλ(uε + tv)− Tλ(uε)

t
+ ε‖v‖→

Φ
≥ 0.

We let t→ 0, which means that 〈T
′
λ(uε),v〉
‖v‖→

Φ

≥−ε. Hence, we deduce that ‖T ′λ(uε)‖≤ε.

Therefore, there is a sequence (wn) ⊂ Bρ(0) so that

Tλ(wn)→ c and T ′λ(wn)→ 0. (4.11)

Evidently, (wn) is bounded in E. Then, there is an element w ∈ E so that, up to a
subsequence, denoted again (wn), wn ⇀ w in E. In a similar fashion as in Theorem 2.1
we can prove that wn → w in E. Consequently, using relation (4.11) we finally have

Tλ(w) = c < 0 and T ′λ(w) = 0.

In other words, w is a nontrivial weak solution for problem (1.1), and the proof of
theorem is complete. �
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5. PROOF OF THEOREM 2.3

We first prove an auxiliary result.
Lemma 5.1. Assume that the hypothesis of Theorem 2.3 is fulfilled. Then the func-
tional Tλ is coercive on E.
Proof. We focus attention on the elements u ∈ E with ‖u‖→

Φ
> 1. Taking into account

hypothesis (2.3), and relation (3.4), similar arguments as those used in the proof of
Lemma 3.1 show that

Tλ(u) ≥
‖u‖(P0)−

→
Φ

N (P0)−−1 −N −
(
B′11‖u‖

q−1
→
Φ

+B′12‖u‖
q+
1
→
Φ

+B′21‖u‖
q−2
→
Φ

+B′22‖u‖
q+
2
→
Φ

)
,

where Bij , i, j = 1, 2, are positive constants. Hence, passing to the limit as n→∞,
we obtain that Tλ(u)→∞, that is Tλ is coercive in E. �

Proof of Theorem 2.3. Lemma 5.1 ensures us that the functional Tλ is coercive on E.
On the other hand, using Lemma 1 in [19], similar arguments as those used in the
proof of Theorem 2 in [20] lead us to the fact that Tλ is weakly lower semicontinuous,
as well. So, we have the necessary data to apply Theorem 1.2 in [32] to obtain the
existence of an element u ∈ E, global minimizer of Tλ and, consequently, the weak
solution of problem (1.1).

We intend to show that u is not trivial for λ sufficiently large. To this end, let
t0 > 1 be a fixed real number and Ω0 ⊂ Ω be a nonempty open subset. Therefore, we
infer that there is an element v ∈ C∞0 (Ω) ⊂ E so that v(x) = t0 for every x ∈ Ω0, and
v(x) ∈ [0, t0] for every x ∈ Ω \ Ω0. We have the following:

Tλ(v) =
∫
Ω

N∑
i=1

Φi(|∂iv|)dx+
∫
Ω

V (x)
m(x) |v|

m(x)dx

− λ
∫
Ω

(
1

q1(x) |v|
q1(x) + 1

q2(x) |v|
q2(x)

)
dx

≤ L+ κ− λ

q+
1

∫
Ω

(
|v|q1(x) + |v|q2(x)

)
dx

≤ L0 −
λ

q+
1

∫
Ω0

(
|v|q1(x) + |v|q2(x)

)
dx

≤ L0 −
λ

q+
1

∫
Ω0

(
t
q−1
0 + t

q−2
0

)
dx

≤ L0 −
2λ|Ω0|t

q−0
0

q+
1

,

where L > 0 is constant and κ is the constant given in the definition of E. Thus, there
is λ∗ > 0 so that Tλ(v) < 0 for all λ ∈ [λ∗,∞). This, together with the fact that u ∈ E
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is global minimizer of Tλ, gives us Tλ(u) < 0 for any λ ∈ [λ∗,∞). In other words, u is
a nontrivial weak solution of our problem for λ sufficiently large, and this completes
the proof of Theorem 2.3. �
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