PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Tryptophan-Based Organoclay for Aqueous Naphthol Blue Black Removal – Preparation, Characterization, and Batch Adsorption Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To prevent the serious threat of textile wastewater, researchers have developed adsorption-based wastewater treatment using cheap, yet effective, adsorbent materials. Of which is natural bentonite, that has the advantages for adsorption due to its porous structure and functional groups but still suffers from its low affinity against anionic and hydrophilic azo dyes. Herein, we aimed of improving the affinity by amino acid tryptophan embedment into the locally isolated natural bentonite collected from Aceh Province, Indonesia. The prepared bentonite samples were characterized using Fourier transform infrared, X-ray diffraction, and scanning electron microscopy. Adsorptive removal was performed on naphthol blue black (NBB) in a batch system with variations of contact time, pH, and adsorbent dosage. The isotherm studies were carried out at optimum conditions (contact time=15 minutes; pH 1; adsorbent dosage=0.2 g) with several models including Langmuir, Freundlich, Sips, and Redlich-Peterson isotherm models. The characterization results revealed that the modification altered its functional group, crystallinity, and micro-surface morphology that add more benefits for adsorption. At optimum conditions, 99.2% NBB has been successfully removed from the aqueous solution. The isotherm studies suggested that the NBB adsorption onto the tryptophane-modified natural bentonite was dependent on Sips isotherm model (R2=0.999; root-mean-square-errors=1.11×10-4 mg/g).
Rocznik
Strony
274--284
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
autor
  • Department of Chemistry Education, Faculty of Education and Teacher Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
Bibliografia
  • 1. Abdel Salam M., Abukhadra M.R., Adlii A. 2020. Insight into the Adsorption and Photocatalytic Behaviors of an Organo-bentonite/Co3O4 Green Nanocomposite for Malachite Green Synthetic Dye and Cr(VI) Metal Ions: Application and Mechanisms. ACS Omega, 5(6), 2766–2778.
  • 2. Afanga H., Zazou H., Titchou F.E., Gaayda J.E., Sopaj F., Akbour R.A., Hamdani M. 2021. Electrochemical oxidation of Naphthol Blue Black with different supporting electrolytes using a BDD /carbon felt cell. Journal of Environmental Chemical Engineering, 9(1), 104498.
  • 3. Ahmad I., Manzoor K., Aalam G., Amir M., Ali S.W., Ikram S. 2022. Facile Synthesis of L-Tryptophan Functionalized Magnetic Nanophotocatalyst Supported by Copper Nanoparticles for Selective Reduction of Organic Pollutants and Degradation of Azo Dyes. Catalysis Letters, 153, 1–20.
  • 4. Baghel R., Upadhyaya S., Chaurasia S.P., Singh K., Kalla S. 2018. Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation. Journal of Cleaner Production, 199, 900–915.
  • 5. Chen H., Chen Q.S., Huang B., Wang S.W., Wang L.Y. 2018. High-potential use of l-Cysh modified bentonite for efficient removal of U(VI) from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 316, 71–80.
  • 6. El-kordy A., Elgamouz A., Lemdek E.M., Tijani N., Alharthi S.S., Kawde A.-N., Shehadi I. 2022. Preparation of Sodalite and Faujasite Clay Composite Membranes and Their Utilization in the Decontamination of Dye Effluents. Membranes, 12(5), 12.
  • 7. Ermanda Y., Lubis S., Ramli M. 2021. Preparation and characterization of activated carbon/hematite composite as efficient photocatalyst for naphthol blue black dye degradation, AIP Conference Proceedings, 2342, 060007.
  • 8. Fathana H., Iqhrammullah M., Rahmi R., Adlim M., Lubis S. 2021. Tofu wastewater-derived amino acids identification using LC-MS/MS and their uses in the modification of chitosan/TiO2 film composite. Chemical Data Collections, 35, 100754.
  • 9. Hajjizadeh M., Ghammamy S., Ganjidoust H., Farsad F. 2020. Amino Acid Modified Bentonite Clay as an Eco-Friendly Adsorbent for Landfill Leachate Treatment. Polish Journal of Environmental Studies, 29(6), 4089–4099.
  • 10. Hameed A.M. 2020. Synthesis of Si/Cu Amorphous Adsorbent for Efficient Removal of Methylene Blue Dye from Aqueous Media. Journal of Inorganic and Organometallic Polymers and Materials, 30, 2881–2889.
  • 11. Iqhrammullah M., Fahrina A., Chiari W., Ahmad K., Fitriani F., Suriaini N., Safitri E., Puspita K. 2023. Laccase Immobilization Using Polymeric Supports for Wastewater Treatment: A Critical Review. Macromolecular Chemistry and Physics, 224, 2200461.
  • 12. Iqhrammullah M., Marlina Hedwig, R., Karnadi I., Kurniawan K.H., Olaiya N.G., Mohamad Haafiz M.K., Abdul Khalil H.P.S., Abdulmadjid S.N. 2020. Filler-Modified Castor Oil-Based Polyurethane Foam for the Removal of Aqueous Heavy Metals Detected Using Laser-Induced Breakdown Spectroscopy (LIBS) Technique. Polymers, 12(4), 903.
  • 13. Iqhrammullah M., Suyanto H., Pardede M., Karnadi I., Kurniawan K.H., Chiari W., Abdulmadjid S.N. 2021. Cellulose acetate-polyurethane film adsorbent with analyte enrichment for in-situ detection and analysis of aqueous Pb using Laser-Induced Breakdown Spectroscopy (LIBS). Environmental Nanotechnology, Monitoring & Management, 16, 100516.
  • 14. Jaber L., Elgamouz A., Kawde A.-N. 2022. An insight to the filtration mechanism of Pb(II) at the surface of a clay ceramic membrane through its preconcentration at the surface of a graphite/clay composite working electrode. Arabian Journal of Chemistry, 15(12), 104303.
  • 15. Kadja T.M.G., Ilmi M.M. 2019. Indonesia natural mineral for heavy metal adsorption: A review. School of Environmental Science, 2(2), 139–164.
  • 16. Kantesaria N., Sharma S. 2020. Exfoliation and Extraction of Nanoclay from Montmorillonite Mineral Rich Bentonite Soil, in: Prashant, A., Sachan, A., Desai, C.S. (Eds.), Advances in Computer Methods and Geomechanics. Springer Singapore, Singapore, 1–12.
  • 17. Kim M., Hwanga S., Yu J.-S. 2007. Novel ordered nanoporous graphitic C3N4 as a support for Pt–Ru anode catalyst in direct methanolfuel cell. Journal of Materials Chemistry, 17, 1656–1659.
  • 18. Kumar A., Mandal A. 2019. Critical investigation of zwitterionic surfactant for enhanced oil recovery from both sandstone and carbonate reservoirs: Adsorption, wettability alteration and imbibition studies. Chemical Engineering Science, 209(14), 115222.
  • 19. Lahnafi A., Elgamou, A., Jaber L., Tijani N., Kawde A.-N. 2023. NaA zeolite-clay composite membrane formulation and its use as cost-effective water softener. Microporous and Mesoporous Materials, 348, 112339.
  • 20. Lahnafi, A. Elgamouz A., Tijani N., Jaber L., Kawde A.-N. 2022. Hydrothermal synthesis and electrochemical characterization of novel zeolite membranes supported on flat porous clay-based microfiltration system and its application of heavy metals removal of synthetic wastewaters. Microporous and Mesoporous Materials, 334, 111778.
  • 21. Marques B.S., Frantz T.S., Sant’Anna Cadaval Junior T.R., de Almeida Pinto L.A., Dotto G.L. 2019. Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents. Environmental Science and Pollution Research, 26, 28584–28592.
  • 22. Mozaffari Majd M., Kordzadeh-Kermani V., Ghalandari V., Askari A., Sillanpää M. 2022. Adsorption isotherm models: A comprehensive and systematic review (2010−2020). Science of The Total Environment, 812, 151334.
  • 23. Nguyen D.T.C., Vo D.V.N., Nguyen T.T., Nguyen T.T.T., Nguyen L.T.T., Tran T.V. 2022. Kinetic, equilibrium, adsorption mechanisms of cationic and anionic dyes on N-doped porous carbons produced from zeolitic-imidazolate framework. International Journal of Environmental Science and Technology, 19, 10723–10736.
  • 24. Puspita K., Chiari W., Abdulmadjid S.N., Idroes R., Iqhrammullah M. 2023. Four Decades of Laccase Research for Wastewater Treatment: Insights from Bibliometric Analysis. International Journal of Environmental Research and Public Health, 20(1), 308.
  • 25. Rahmi, Julinawati, Nina M., Fathana H., Iqhrammullah M. 2022a. Preparation and characterization of new magnetic chitosan-glycine-PEGDE (Fe3O4/Ch-G-P) beads for aqueous Cd(II) removal. Journal of Water Process Engineering, 45, 102493.
  • 26. Rahmi R., Lelifajri L., Iqbal M., Fathurrahmi F., Jalaluddin J., Sembiring R., Farida M., Iqhrammullah M. 2022b. Preparation, Characterization and Adsorption Study of PEDGE-Cross-linked Magnetic Chitosan (PEDGE-MCh) Microspheres for Cd2+ Removal. Arabian Journal for Science and Engineering, 48, 159–167.
  • 27. Sahoo J.K., Paikra S.K., Mishra M., Sahoo H. 2019. Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of Congo red dye. Journal of Molecular Liquids, 282, 428–440.
  • 28. Surya L., Sheilatina Praja P.V., Sepia N.S. 2018. Preparation and Characterization of Titania/Bentonite Composite Application on the Degradation of Naphthol Blue Black Dye. Research Journal of Chemistry and Environment, 22(2), 48–53.
  • 29. Taher T., Rohendi D., Mohadi R., Lesbani A. 2019. Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: kinetic, equilibrium, and thermodynamic studies. Arab Journal of Basic and Applied Sciences, 26, 125–136.
  • 30. Tanhaei B., Ayati A., Iakovlev, E., Sillanpää M. 2020. Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: Synthesis, characterization and adsorption study. International Journal of Biological Macromolecules, 164, 3621–3631.
  • 31. Toledo P.V., Bernardinelli O.D., Sabadini E., Petri D.F. 2020. The states of water in tryptophan grafted hydroxypropyl methylcellulose hydrogels and their effect on the adsorption of methylene blue and rhodamine B. Carbohydrate Polymers, 248, 116765.
  • 32. Tzabar N., Ter Brake H.J.M. 2016. Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride. Adsorption, 22, 901–914.
  • 33. Yang G., Gao H., Lia Q., Ren S. 2021. Preparation and dye adsorption properties of an oxygen-rich porous organic polymer. RSC Advances, 11, 15921–15926.
  • 34. Zhang W., Zhang R.-Z., Yin Y., Yang J.-M. 2020. Superior selective adsorption of anionic organic dyes by MIL-101 analogs: Regulation of adsorption driving forces by free amino groups in pore channels. Journal of Molecular Liquids, 302, 112616.
  • 35. Zhou G., Wang Y., Zhou R., Wang C., Jin Y., Qiu J., Hua C., Cao Y. 2019. Synthesis of amino-functionalized bentonite/CoFe2O4@MnO2 magnetic recoverable nanoparticles for aqueous Cd2+ removal. Science of The Total Environment, 682, 505–513.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a70edfa1-75fa-4cd7-9fcb-9201ac2c4bf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.