PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the elastic cavity walls on cavity flow noise

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, computational fluid dynamics and computational aeroacoustics methods were used to investigate the influence of the elastic cavity walls on the noise generated by the flow over rectangular cavity. Two cases were considered and compared, one with rigid cavity walls, and one with elastic walls. In the latter case, the movement of the walls were solved by finite element modelling and coupled with CFD simulations. The noise generated by the flow over cavity was computed using Ffowcs Williams & Hawkings acoustic analogy. The increase of the sound pressure level for elastic walls case at frequency range of 1 kHz to 10 kHz is observed, compared to the rigid walls case.
Rocznik
Strony
art. no. 2021109
Opis fizyczny
Bibliogr. 22 poz., il., rys., wykr.
Twórcy
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities, 30 Mickiewicza Av., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities, 30 Mickiewicza Av., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities, 30 Mickiewicza Av., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities, 30 Mickiewicza Av., 30-059 Kraków, Poland
Bibliografia
  • 1. A. Fry. Noise Control in Building Services. Pergamon Press, 1988.
  • 2. I. L. Ver, and L. L. Beranek. Noise and Vibration Control Engineering. Principles and Applications. John Wiley & Sons Ltd., 2006.
  • 3. K. K. Ahuja, J. Mendoza. Effect of Cavity Dimensions, Boundary Layer, and Temperature on Cavity Noise With Emphasis on Benchmark Data to Validate Computational Aeroacoustic Codes. National Aeronautics Space Administration, 1995.
  • 4. M. S. Howe. Edge, cavity and aperture tones at very low Mach numbers. Journal of Fluid Mechanics, 330:61-84, 1997.
  • 5. J. E. Rossiter. Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds. ARCR & M 3438, 1964
  • 6. S. Weyna. Rozpływ energii akustycznych źródeł rzeczywistych. WNT, 2005.
  • 7. A.I. Alsabery, F. Selimefendigil, I. Hashim, A.J. Chamkha, M. Ghalambaz. Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. International Journal of Heat and Mass Transfer, 140:331-45, 2019.
  • 8. K. Khanafer. Comparison of Flow and Heat Transfer Characteristics in a Lid-Driven Cavity Between Flexible and Modified Geometry of a Heated Bottom Wall. International Journal of Heat and Mass Transfer, 78:1032-41, 2014.
  • 9. W. A. Sabbar, M. A. Ismael, M. Almudhaffar. Fluid-Structure Interaction of Mixed Convection in a Cavity-Channel Assembly of Flexible Wall. International Journal of Mechanical Sciences, 149:73-83, 2018.
  • 10. H. G. Weller, G. Tabor, H. Jasak, C. Fureby. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6):620-631, 1998.
  • 11. M. Strelets. Detached eddy simulation of massively separated flows. 39th AIAA Fluid Dynamics Conference and Exhibit, 2001.
  • 12. J. Blazek. Computational Fluid Dynamics. Principles and Applications. Elsevier Ltd. 2015.
  • 13. G. Dhondt, The Finite Element Method for Three-dimensional Thermomechanical Applications. John Wiley & Sons Ltd, 2004.
  • 14. L. Lapidus, G. Pinder. Numerical Solution of Partial Differential Equations in Science and Engineerig. John Wiley & Sons Ltd. 1999.
  • 15. H. J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B. Uekermann, preCICE - A fully paralel library for multi-physics surface coupling, Computers & Fluids, 141:250-258, 2016.
  • 16. S. Turek, J. Hron. Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between an Elastic Object and Laminar Incompressible Flow. Fluid-Structure Interaction: Modelling, Simulation, Optimisation, 53: 371-85, 2006.
  • 17. J. E. Ffowcs Williams, D. L. Hawkings. Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 264(1151):321-342, 1969.
  • 18. K. S. Brentner, F. Farassat. Modeling aerodynamically generated sound of helicopter rotors. Progress in Aerospace Sciences, 39(2):83-120, 2003.
  • 19. F. Farassat. Derivation of Formulations 1 and 1A of Farassat. NASA/TM-2007-214853. 2007.
  • 20. A. Epikhin, I. Evdokimov, M. Kraposhin, M. Kalugin, S. Strijhak. Development of a Dynamic Library for Computational Aeroacoustics Applications Using the OpenFOAM Open Source Package. Procedia Computer Science. 2015.
  • 21. K. Jarosz, I. Czajka, A. Gołaś. Implementation of Ffowcs Williams and Hawkings aeroacoustic analogy in OpenFOAM, Vibrations in Physical Systems, 27:161-168, 2016.
  • 22. D. Rockwell, E. Naudascher. Review - Self-Sustaining Oscillations of Flow Past Cavities. Journal of Fluids Engineering, 100(2):152-165, 1978.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a70bc72a-ca69-479d-97e1-4226c2a072d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.