PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przyjazne środowisku rozwiązania materiałowe w technologii autoklawizowanego betonu komórkowego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Environmentally friendly material solutions in the technology of autoclaved aerated concrete
Konferencja
VII Konferencja SPB 2022. Prefabrykacja betonowa i beton komórkowy w budownictwie, 11-12.X.2022 r., Hotel Narvil, Serock
Języki publikacji
PL EN
Abstrakty
PL
Autoklawizowany beton komórkowy jest materiałem przyjaznym środowisku. Jednak wymogi współczesnego świata, a przede wszystkim troska o przyszłość, wymusza poszukiwanie nowych rozwiązań minimalizujących negatywne skutki środowiskowe. W pracy przedstawiono wybrane rozwiązania wykorzystania w technologii autoklawizowanego betonu komórkowego materiałów odpadowych i ubocznych produktów z innych technologii, z uwzględnieniem potencjalnych zagrożeń i ograniczeń. Zwrócono również uwagę na zagospodarowanie odpadu z betonu komórkowego w innych technologiach, przede wszystkim jako substytutu cementu lub dodatku do betonu. Praca ma ze względu na swoją objętość wybiórczy zakres, jednak głównym jej celem jest przedstawienie trendów i kierunków poszukiwań nowych rozwiązań materiałowych, w tej technologii.
EN
Autoclaved aerated concrete is an environmentally friendly material. However, the demands of the modern world and, above all, care for the future, necessitate the search for new solutions to minimise negative environmental effects. This paper presents selected solutions for the use of waste materials and by-products from other techniques in autoclaved aerated concrete production, taking into account potential risks and limitations. Attention was also drawn to the use of aerated concrete waste in other methods, primarily as a cement substitute, or concrete additive. The paper is selective in nature due to its volume, but the main purpose is to present trends and directions in the search for new material solutions in this technology.
Czasopismo
Rocznik
Strony
166--177
Opis fizyczny
Bibliogr. 38 poz., il.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Building Materials Technology, Kraków, Poland
Bibliografia
  • 1. A. Hinc, Transformacja gospodarki w kierunku niskoemisyjnym. Studia BAS 29, 109-136 (2012).
  • 2. “Fit for 55” package [part of the European Green Deal], adopted by the European Commission on July 14, 2021.
  • 3. B.G. Hellers, R. Schmidt, Autoclaved Aerated Concrete (AAC) - the story of low-weight material. Proc. V Int. Conf. of Autoclaved Aerated Concrete, Bydgoszcz 2011.
  • 4. G. Zapotoczna-Sytek, S. Balkovic, Autoclaved aerated concrete. PWN, Warszawa 2013 (in Polish).
  • 5. N. Narayanan, K. Ramamurthy, Microstructural investigations on aerated concrete. Cem. Concr. Res. 30, 457-464 (2000). https://doi.org/10.1016/S0008-8846(00)00199-X
  • 6. X. Qu, X. Zhao, Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete - A review. Constr. Build. Mater. 135, 505-516 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.208
  • 7. Announcement of the Minister of Investment and Development of Poland of April 8, 2019 on the announcement of the uniform text of the ordinance of the Minister of Infrastructure on technical conditions to be met by buildings and their location. Journal of Laws of The Republic of Poland 2019, item 1065.
  • 8. P. Walczak, P. Szymański, A. Różycka, Autoclaved Aerated Concrete based on fly ash in density 350 kg/m3 as an environmentally friendly material for energy - efficient constructions. Proc. Eng. 122, 39-46 ( 2015 ). https://doi.org/10.1016/j.proeng.2015.10.005
  • 9. N.N. Lam, Influence of fly ash and recycled AAC waste for replacement of natural sand in manufacture of Autoclaved Aerated Concrete. 2020 IOP Conf. Ser.: Earth Environ. Sci. 505 012001 (2020). https://doi.org/10.1088/1755-1315/505/1/012001
  • 10. W. Nocuń-Wczelik, Efect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates. Cem. Concr. Res. 29, 1759-1767 (1999). https://doi.org/10.1016/S0008-8846(99)00166-0
  • 11. N.Y. Mostafa, A.A. Shaoult, H. Omar, S.A. Abo-El-Enim, Hydrothermal synthesis and characterization of aluminum and sulphate substituted 1.1 nm tobermorites. J. Alloys Compd. 467, 332-337 (2009). https://doi.org/10.1016/j.jallcom.2007.11.130
  • 12. A. Różycka, W. Pichór, Effect of perlite waste addition on the properties of autoclaved aerated Concrete. Constr. Build. Mater. 120, 65-71 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.019
  • 13. Perlite and Vermiculite: 2014 Market Review and Forecast, Merchant Research & Consulting Report, 2014.
  • 14. W. Kurdowski, J. Pawluk, Limestone meal as active mineral additive for production of aerated autoclaved concrete. Cem. Wapno Beton 24(2) 154-160 (2019).
  • 15. K. Matsui, A. Ogawa, J. Kikuma, M. Tsunashima, T. Ishikawa, S. Matsuno, Influence of addition of AI compound and gypsum on tobermorite formation in autoclaved aerated concrete studied by in situ X-ray diffraction. Cem. Wapno Beton, 16 (special issue), 3-6 (2011).
  • 16. R.D. Wu, S.B. Dai, S.W. Jian, J. Huang, H.B. Tan, B.D. Li, Utilization of solid waste high-volume calcium coal gangue in autoclaved aerated concrete: Physico-mechanical properties, hydration products and economic costs. J. Clean. Prod. 278, 123416 (2021). https://doi.org/10.1016/j.jclepro.2020.123416
  • 17. M.S. Zafar, U. Javed, R.A. Khushnood, A. Nawaz, T. Zafar, Sustainable incorporation of waste granite dust as partial replacement of sand in autoclave aerated concrete. Constr. Build. Mater. 250, 118878 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118878
  • 18. W. Pichór, Properties of autoclaved aerated concretes with cenospheres from coal ash. Cem. Wapno Beton 17, 32-36 (2012).
  • 19. C. Chucholowski, H. Müller, K.-Ch. Thienel, Low-sulfate autoclaved aerated concrete (AAC): A recyclable AAC with calcined clay. Constr. Build. Mater. 342, 127984 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127984
  • 20. H. Wan, Y. Hu, G. Liu, Y. Qu, Study on the structure and properties of autoclaved aerated concrete produced with the stone-sawing mud. Constr. Build. Mater. 184, 20-26 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.214
  • 21. J. Mendoza, M. Feced, G. Feijoo, A. Josa, X. Gabarrell, J. Rieradevall, Life cycle inventory analysis of granite production from cradle to gate. Int. J. Life Cycle Assess. 19, 153-165 (2014). https://doi.org/10.1007/s11367-013-0637-6
  • 22. L. Lakhani, R.K. Sharma, P. Tomar, Utilization of stone waste in the development of value added products: a state of the art review. JESTR 7, 180-187 (2014). https://doi.org/10.25103/jestr.073.29
  • 23. P. Torres, H.R. Fernandes, S. Olhero, J.M.F. Ferreira, Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles. J. Eur. Ceram. Soc. 29, 23-30 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.05.045
  • 24. W. Szudek, Ł. Gołek, G. Malata, Z. Pytel, Influence of waste glass powder addition on the microstructure and mechanical properties of autoclaved building materials. Materials 15, 434 (2022). https://doi.org/10.3390/ma15020434
  • 25. Y. Song, Z.L. B. Li, E.-H. Yang, Y. Liu, T. Ding, Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cem. Concr. Comp. 56, 51-58 (2015). https://doi.org/10.1016/j.cemconcomp.2014.11.006
  • 26. Municipal waste generated in 2019. Eurostat report, 2021.
  • 27. C. Lam, A.W.M. Ip, J.P. Barford, G. McKay, Use of Incineration MSW Ash: A Review. Sustainability 2, 1943-1968 (2010). https://doi.org/10.1016/j.jeurceramsoc.2008.05.045
  • 28. J.M. Chimenos, M. Segarra, M.A. Fernández, F. Espiell, Characterization of the bottom ash in municipal solid waste incinerator. J. Hazardous Mater. 64, 211-222 (1999). https://doi.org/10.1016/S0304-3894(98)00246-5
  • 29. A. Hauser, U. Eggenberger, T. Mumenthaler, Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete. Cem. Concr. Res. 29, 297-302 (1999). https://doi.org/10.1016/S0008-8846(98)00207-5
  • 30. A. Różycka, Ł. Kotwica, Waste originating from the cleaning of flue gases from the combustion of industrial wastes as a lime partial replacement in autoclaved aerated concrete. Materials 15, 2576 (2022). https://doi.org/10.3390/ma15072576
  • 31. www.eaaca.org
  • 32. F.H. Fouad, T. Schoch, AAC in USA - a second look. Ce/Papers - Special Issue: ICAAC - 6th Int. Conf. Autoclaved Aerated Concrete. 2(4) E1-E6 (2018).
  • 33. X. He, Z. Zheng, J. Yang, Y. Su, T. Wang, B. Strnadel, Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials. J. Clean. Prod. 250, 119455 (2020). https://doi.org/10.1016/j.jclepro.2019.119455
  • 34. J. Yang, L. Zheng, Z. Su, X. He, Y. Su, R. Zhao, X. Gan, Wet-milling disposal of autoclaved aerated concrete demolition waste - A comparison study with classical supplementary cementitious. Adv. Powder Techn. 31, 3736-3746 (2020). https://doi.org/10.1016/j.apt.2020.07.016
  • 35. L. Qin, X. Gao, Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation. Waste Manag. 89, 254-264 (2019). https://doi.org/10.1016/j.wasman.2019.04.018
  • 36. T. Wang, H. Wuang, X. Hu, M. Fang, Z. Luo, R. Guo, Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate. Chem. Eng. J. 323, 320-329 (2017) https://doi.org/10.1016/j.cej.2017.03.157
  • 37. D. Zhang, Z. Ghouleh, Y. Shao, Review on carbonation curing of cement-based materials. J. CO2 Util. 21, 119-131 (2017). https://doi.org/10.1016/j.jcou.2017.07.003
  • 38. J. Yang, F. Wang, X. He, Y. Su, T. Wang, M. Ma, Potential usage of porous autoclaved aerated concrete waste as eco-friendly internal curing agent for shrinkage compensation. J. Clean. Prod. 320, 128894 (2021). https://doi.org/10.1016/j.jclepro.2021.128894
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a70ac842-d1b7-4d3f-903a-09644193b440
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.