PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tissue coefficient of bioimpedance spectrometry as an index to discriminate different tissues in vivo

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioimpedance indicating cell and tissue condition of the living things is of great importance in impedance spectrum analysis and other related researches, in which measurement of the skin impedance is a tricky problem due to the peculiarity of the stratum corneum. The aim of the study is to develop a method to elucidate the skin impedance in a large frequency range and to find out a biomarker to estimate it. In this article, we introduce a non-destructive method of using both surface and needle electrodes to investigate the electrical properties of the skin including stratum corneum of sixteen anesthetized C57BL/6 mice in vivo. A capacitance model was introduced to bridge the complex Debye's model and the practical three-element model. A new biomarker (tissue coefficient) was introduced to compare the whole skin with the viable skin. The contribution of the viable skin to the impedance of the whole skin can be ignored unless the concerned frequency is much higher than 10 kHz. The CG plot show direct link with the e-s plot, and the tissue coefficient shows significant difference between the whole skin and viable skin and reflects the alpha and beta dispersions. The results suggest that the method of using both surface and needle electrodes to investigate the impedance the whole skin including stratum corneum is practical, and the tissue coefficient is especially suitable for in vivo study, and has great potentials in estimation and discrimination of living tissues, cancer detection, bioelectrical impedance analysis (BIA) and other related fields.
Twórcy
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, No. 236, Baidi Road, Nankai District, Tianjin, 300192, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, No. 236, Baidi Road, Nankai District, Tianjin, 300192, China
Bibliografia
  • [1] Wagner K. Dielectric relaxation in distributed dielectric layers. Ann Phys-Leipzig 1913;345(5):817.
  • [2] Khalil S, Mohktar M, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014;14 (6):10895–928.
  • [3] Lukaski HC, Vega Diaz N, Talluri A, Nescolarde L. Classification of hydration in clinical conditions: indirect and direct approaches using bioimpedance. Nutrients 2019;11(4):809.
  • [4] Ellegård L, Aldenbratt A, Svensson MK, Lindberg C. Body composition in patients with primary neuromuscular disease assessed by dual energy X-ray absorptiometry (DXA) and three different bioimpedance devices. Clin Nutr ESPEN 2019;29:142–8.
  • [5] Chabin X, Taghli-Lamallem O, Mulliez A, Bordachar P, Jean F, Futier E, et al. Bioimpedance analysis is safe in patients with implanted cardiac electronic devices. Clin Nutr 2019;38 (2):806–11.
  • [6] Whitworth PW, Cooper A. Reducing chronic breast cancer- related lymphedema utilizing a program of prospective surveillance with bioimpedance spectroscopy. Breast J 2018;24(1):62–5.
  • [7] Tabinor M, Elphick E, Dudson M, Kwok CS, Lambie M, Davies SJ. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): systematic review and subgroup meta-analysis. Sci Rep 2018;8(1):4441.
  • [8] Svensson BJ, Dylke ES, Ward LC, Kilbreath SL. Electrode equivalence for use in bioimpedance spectroscopy assessment of lymphedema. Lymphat Res Biol 2018;17 (1):51–9.
  • [9] Montalvo R, Bernabe-Ortiz A, Kirwan DE, Gilman RH. Bioimpedance markers and tuberculosis outcome among HIV-infected patients. Afr J Infect Dis 2018;12(2):47–54.
  • [10] Mereu E, Succa V, Buffa R, Sanna C, Mereu RM, Catte O, et al. Total body and arm bioimpedance in patients with Alzheimer's disease. Exp Gerontol 2018;102:145–8.
  • [11] Maioli M, Toso A, Leoncini M, Musilli N, Grippo G, Ronco C, et al. Bioimpedance-guided hydration for the prevention of contrast-induced kidney injury: the HYDRA study. J Am Coll Cardiol 2018;71(25):2880–9.
  • [12] Li D, Pu Z, Liang W, Liu T, Wang R, Yu H, et al. Non-invasive measurement of normal skin impedance for determining the volume of the transdermally extracted interstitial fluid. Measurement 2015;62:215–21.
  • [13] Esco MR, Nickerson BS, Fedewa MV, Moon JR, Snarr RL. A novel method of utilizing skinfolds and bioimpedance for determining body fat percentage via a field-based three-compartment model. Eur J Clin Nutr 2018;72(10):1431.
  • [14] Ellegård L, Petersen P, Öhrn L, Bosaeus I. Longitudinal changes in phase angle by bioimpedance in intensive care patients differ between survivors and non-survivors. Clin Nutr ESPEN 2018;24:170–2.
  • [15] Parviz M, Toshniwal P, Viola HM, Hool LC, Fear PMW, Wood FM, et al. Real-time bioimpedance sensing of antifibrotic drug action in primary human cells. ACS Sens 2017;2 (10):1482–90.
  • [16] Nishikawa H, Enomoto H, Iwata Y, Nishimura T, Iijima H, Nishiguchi S. Clinical utility of bioimpedance analysis in liver cirrhosis. J Hepatobiliary Pancreat Sci 2017;24 (7):409–16.
  • [17] Cranfield CG, Cornell BA, Grage SL, Duckworth P, Carne S, Ulrich AS, et al. Transient potential gradients and impedance measures of tethered bilayer lipid membranes: pore-forming peptide insertion and the effect of electroporation. Biophys J 2014;106(1):182–9.
  • [18] Fry CH, Salvage SC, Manazza A, Dupont E, Labeed FH, Hughes MP, et al. Cytoplasm resistivity of mammalian atrial myocardium determined by dielectrophoresis and impedance methods. Biophys J 2012;103(11):2287–94.
  • [19] Di Biasio A, Ambrosone L, Cametti C. The dielectric behavior of nonspherical biological cell suspensions: an analytic approach. Biophys J 2010;99(1):163–74.
  • [20] Mannoor MS, James T, Ivanov DV, Beadling L, Braunlin W. Nanogap dielectric spectroscopy for aptamer-based protein detection. Biophys J 2010;98(4):724–32.
  • [21] Teixeira VS, Kalckhoff J-P, Krautschneider W, Schroeder D. Bioimpedance analysis of L929 and HaCaT cells in low frequency range. Curr Dir Biomed Eng 2018;4(1):115–8.
  • [22] Shi F, Steuer A, Zhuang J, Kolb JF. Bioimpedance analysis of epithelial monolayers after exposure to nanosecond pulsed electric fields. IEEE Trans Biomed Eng 2018;66 (7):2010–21.
  • [23] Halter RJ, Hartov A, Poplack SP, diFlorio-Alexander R, Wells WA, Rosenkranz KM, et al. Real-time electrical impedance variations in women with and without breast cancer. IEEE Trans Med Imaging 2015;34(1):38–48.
  • [24] Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin 2017;35(4):489–93.
  • [25] Mohr P, Birgersson U, Berking C, Henderson C, Trefzer U, Kemeny L, et al. Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Res Technol 2013;19(2):75–83.
  • [26] Ullah W, Hunter RJ, Baker V, Dhinoja MB, Sporton S, Earley MJ, et al. Target indices for clinical ablation in atrial fibrillation: insights from contact force, electrogram, and biophysical parameter analysis. Circ Arrhythm Electrophysiol 2014;7(1):63–8.
  • [27] Massari F, Scicchitano P, Ciccone MM, Caldarola P, Aspromonte N, Iacoviello M, et al. Bioimpedance vector analysis predicts hospital length of stay in acute heart failure. Nutrition 2019;61:56–60.
  • [28] Corley A, Caruana LR, Barnett AG, Tronstad O, Fraser JF. Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients. Br J Anaesth 2011;107(6):998–1004.
  • [29] Vardavas CI, Anagnostopoulos N, Kougias M, Evangelopoulou V, Connolly GN, Behrakis PK. Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 2012;141(6):1400–6.
  • [30] De Miguel-Etayo P, Moreno LA, Santabarbara J, Martin- Matillas M, Piqueras MJ, Rocha-Silva D, et al. Anthropometric indices to assess body-fat changes during a multidisciplinary obesity treatment in adolescents: EVASYON Study. Clin Nutr 2015;34(3):523–8.
  • [31] Gatterer H, Schenk K, Laninschegg L, Schlemmer P, Lukaski H, Burtscher M. Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling. PLoS One 2014;9(10):e109729.
  • [32] Carrion BM, Wells A, Mayhew JL, Koch AJ. Concordance among bioelectrical impedance analysis measures of percent body fat in athletic young adults. Int J Exerc Sci 2019;12(4):324–31.
  • [33] Yang S-W, Kim T-H, Choi H-M. The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults. J Exerc Rehabil 2018;14(4):621.
  • [34] Kraemer M. A new model for the determination of fluid status and body composition from bioimpedance measurements. Physiol Meas 2006;27(9):901.
  • [35] Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside. Nutr Clin Pract 2015;30(2):180–93.
  • [36] Esco MR, Snarr RL, Leatherwood MD, Chamberlain NA, Redding ML, Flatt AA, et al. Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. J Strength Cond Res 2015;29(4):918–25.
  • [37] Giorgi A, Vicini M, Pollastri L, Lombardi E, Magni E, Andreazzoli A, et al. Bioimpedance patterns and bioelectrical impedance vector analysis (BIVA) of road cyclists. J Sports Sci 2018;36(22):2608–13.
  • [38] Peppa M, Stefanaki C, Papaefstathiou A, Boschiero D, Dimitriadis G, Chrousos GP. Bioimpedance analysis vs. DEXA as a screening tool for osteosarcopenia in lean, overweight and obese Caucasian postmenopausal females. Hormones 2017;16(2):181–93.
  • [39] Bjorklund S, Ruzgas T, Nowacka A, Dahi I, Topgaard D, Sparr E, et al. Skin membrane electrical impedance properties under the influence of a varying water gradient. Biophys J 2013;104(12):2639–50.
  • [40] Groeber F, Engelhardt L, Egger S, Werthmann H, Monaghan M, Walles H, et al. Impedance spectroscopy for the non-destructive evaluation of in vitro epidermal models. Pharm Res 2015;32(5):1845–54.
  • [41] Constantin M-M, Poenaru E, Poenaru C, Constantin T. Skin hydration assessment through modern non-invasive bioengineering technologies. Maedica 2014;9(1):33.
  • [42] White EA, Orazem ME, Bunge AL. Characterization of damaged skin by impedance spectroscopy: mechanical damage. Pharm Res 2013;30(8):2036–49.
  • [43] Asklöf M, Kjølhede P, Wodlin NB, Nilsson L. Bioelectrical impedance analysis; a new method to evaluate lymphoedema, fluid status, and tissue damage after gynaecological surgery—a systematic review. Eur J Obstet Gynecol Reprod Biol 2018.
  • [44] Park JH, Jo Y-I, Lee J-H. Clinical usefulness of bioimpedance analysis for assessing volume status in patients receiving maintenance dialysis. Korean J Intern Med 2018;33(4):660.
  • [45] Dasgupta I, Keane D, Lindley E, Shaheen I, Tyerman K, Schaefer F, et al. Validating the use of bioimpedance spectroscopy for assessment of fluid status in children. Pediatr Nephrol 2018;33(9):1601–7.
  • [46] Siriopol D, Voroneanu L, Hogas S, Apetrii M, Gramaticu A, Dumea R, et al. Bioimpedance analysis versus lung ultrasonography for optimal risk prediction in hemodialysis patients. Int J Cardiovasc Imaging 2016;32 (2):263–70.
  • [47] Shah C, Vicini FA, Arthur D. Bioimpedance spectroscopy for breast cancer related lymphedema assessment: clinical practice guidelines. Breast J 2016;22(6):645–50.
  • [48] Tan BK, Yu Z, Fang W, Lin A, Ni Z, Qian J, et al. Longitudinal bioimpedance vector plots add little value to fluid management of peritoneal dialysis patients. Kidney Int 2016;89(2):487–97.
  • [49] Milani GP, Groothoff JW, Vianello FA, Fossali EF, Paglialonga F, Consolo S, et al. Bioimpedance spectroscopy imprecisely assesses lean body mass in pediatric dialysis patients. J Pediatr Gastroenterol Nutr 2018;67(4):533–7.
  • [50] Tangvoraphonkchai K, Davenport A. Changes in body composition following haemodialysis as assessed by bioimpedance spectroscopy. Eur J Clin Nutr 2017;71(2):169.
  • [51] Milani GP, Groothoff JW, Vianello FA, Fossali EF, Paglialonga F, Edefonti A, et al. Bioimpedance and fluid status in children and adolescents treated with dialysis. Am J Kidney Dis 2017;69(3):428–35.
  • [52] Gómez-Ambrosi J, González-Crespo I, Catalán V, Rodríguez A, Moncada R, Valentí V, et al. Clinical usefulness of abdominal bioimpedance (ViScan) in the determination of visceral fat and its application in the diagnosis and management of obesity and its comorbidities. Clin Nutr 2018;37(2):580–9.
  • [53] Park KS, Lee D-H, Lee J, Kim YJ, Jung KY, Kim KM, et al. Comparison between two methods of bioelectrical impedance analyses for accuracy in measuring abdominal visceral fat area. J Diabetes Complicat 2016;30 (2):343–9.
  • [54] Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Stanley S, et al. Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clin Nutr ESPEN 2019.
  • [55] Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 1941;9 (4):341–51.
  • [56] Barsoukov E, Macdonald JR. Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons; 2005.
  • [57] Cole KS. Electric impedance of suspensions of spheres. J Gen Physiol 1928;12(1):29–36.
  • [58] Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 1996;41 (11):2231–49.
  • [59] Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum. Med Biol Eng 1976;14(2):151–8.
  • [60] Martinsen OG, Grimnes S. Facts and myths about electrical measurement of stratum corneum hydration state. Dermatology 2001;202(2):87–9.
  • [61] Mullie LA, O'Brand A, Bendayan M, Moss E, Morin J-F, Langlois Y, et al. De Varennes B. BIOIMPEDANCE phase angle as a biomarker for frailty and predictor of mortality in Cardiac Surgery. J Am Coll Cardiol 2018;71(11 Supplement):A1356.
  • [62] Schwan HP. Electrical properties of tissue and cell suspensions. AdBMP, Volume 5. Elsevier; 1957. p. 147–209.
  • [63] Pethig R. Dielectric and electronic properties of biological materials. Wiley; 1979.
  • [64] Pethig R, Kell DB. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. PMB 1987;32(8):933–70.
  • [65] Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng 1988;17(1):25–104.
  • [66] Duck FA. Physical properties of tissues: a comprehensive reference book. Academic press; 1990.
  • [67] McAdams ET, Jossinet J. Tissue impedance: a historical overview. Physiol Meas 1995;16(3 Suppl A):A1–13.
  • [68] Faes T, Van der Meij H, De Munck J, Heethaar R. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas 1999;20(4):R1.
  • [69] Miklavcic D, Pavšelj N, Hart FX. Electric properties of tissues. Wiley encyclopedia of biomedical engineering. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2006.
  • [70] Martinsen OG, Grimnes S. Bioimpedance and bioelectricity basics. Academic press; 2011.
  • [71] Palko T, Galwas B. Electrical properties of biological tissues, their measurements and biomedical applications. Automedica 1999;17(4):343.
  • [72] Palko T. Impedance methods for tissue characterization. Biocybern Biomed Eng 2002;22(4):69–77.
  • [73] Alexander C, Sadiku M. Fundamentals of electric circuits. McGraw-Hill Education; 2012.
  • [74] Cole KS. Electric phase angle of cell membranes. J Gen Physiol 1932;15(6):641–9.
  • [75] Schwan H. Electrical properties of tissues and cell suspensions: mechanisms and models.Engineering in Medicine and Biology Society, 1994 Engineering Advances: New Opportunities for Biomedical Engineers Proceedings of the 16th Annual International Conference of the IEEE. IEEE 1994;A70–1. Vol. 1.
  • [76] Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 1996;41(11):2251–69.
  • [77] Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 1996;41(11):2271–93.
  • [78] Martinsen ØG, Grimnes S, Haug E. Measuring depth depends on frequency in electrical skin impedance measurements. Skin Res Technol 1999;5(3):179–81.
  • [79] Kalia YN, Pirot F, Guy RH. Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophys J 1996;71(5):2692–700.
  • [80] Hua P, Woo EJ, Webster JG, Tompkins WJ. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. IEEE Trans Biomed Eng 1993;40 (4):335–43.
  • [81] Boyle A, Adler A. The impact of electrode area, contact impedance and boundary shape on EIT images. Physiol Meas 2011;32(7):745.
  • [82] Martinsen OG, Grimnes S. Bioimpedance and bioelectricity basics. Academic Press; 2015.
  • [83] Rosell J, Colominas J, Riu P, Pallas-Areny R, Webster JG. Skin impedance from 1 Hz to 1 MHz. IEEE Trans Biomed Eng 1988;35(8):649–51.
  • [84] Yamamoto Y, Yamamoto T, Ozawa T. Characteristics of skin admittance for dry electrodes and the measurement of skin moisturisation. Med Biol Eng Comput 1986;24(1):71–7.
  • [85] Gómez F, Bernal J, Rosales J, Córdova T. Modeling and simulation of equivalent circuits in description of biological systems-a fractional calculus approach. J Electr Bioimpedance 2012;3(1):2–11.
  • [86] Gómez-Aguilar J, Escalante-Martínez J, Calderón-Ramón C, Morales-Mendoza L, Benavidez-Cruz M, Gonzalez-Lee M. Equivalent circuits applied in electrochemical impedance spectroscopy and fractional derivatives with and without singular kernel. Adv Math Phys 2016;2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a702d1c1-db02-47d3-97d8-868f8cd66e82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.