PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Numerical Investigation on Compression Orthotropic Properties of Spruce Wood in Axial and Transverse Loading Directions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Compression tests on spruce wood in axial, radial and tangential directions have been performed using an INSTRON hydraulic machine. Spruce elastic mechanical properties and plastic deformation behaviour are presented. Experimental results allow to demonstrate different spruce failure modes: fibers buckling and collapsing are noticed under axial compression whereas, fibers slippage and delamination are the main failure modes under compression loading in radial and tangential directions. Spruce energy absorption efficiency and ideality energy absorption efficiency in the three loading directions are also analyzed. Representative volume element (RVE) model is adopted assuming transverse isotropic behavior to simulate wood microstructure in all directions. It was shown that micro-cell arrangement leads to wood macromechanical property spatial anisotropy. Porosity and hole shape effects on simulation results are estimated by RVE models with hexagon, circle, pentagon and square holes.
Rocznik
Strony
381–--401
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Systems Engineering China Academy of Engineering Physics P.O.Box 919-401 621999, Mianyang, Sichuan, China
autor
  • National Engineering School of Metz, Laboratory of Mechanics, Biomechanics, Polymers and Structures 1 route d’Ars Laquenexy, CS 65820 57078 Metz Cedex 3, France
autor
  • Institute of Structural Engineering Poznan University of Technology Piotrowo 5, 60-965 Poznan, Poland
autor
  • Institute of Systems Engineering China Academy of Engineering Physics P.O.Box 919-401 621999, Mianyang, Sichuan, China
autor
  • Department of Civil Engineering American University of Sharjah P.O.Box 26666 Sharjah, U.A.E
Bibliografia
  • 1. Adalian C., Morlier P., A model for the behaviour of wood under dynamic multiaxial compression, Composites Science and Technology, 61, 3, 403–408, 2001.
  • 2. Trtik P., Dual J., Keunecke D. et al., 3D imaging of microstructure of spruce wood, Journal of Structural Biology, 159, 1, 46–55, 2007.
  • 3. Gindl W., Gupta H.S., Schoberl T., Lichtenegger H.C., Fratzl P. ¨ , Mechanical properties of spruce wood cell walls by nanoindentation, Applied Physics A, 79, 8, 2069– 2073, 2004.
  • 4. Reiterer A., Lichtenegger H., Fratzl P. et al., Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading, Journal of Materials Science, 36, 19, 4681–4686, 2001.
  • 5. Sonderegger W., Niemz P., The influence of compression failure on the bending, impact bending and tensile strength of spruce wood and the evaluation of non-destructive methods for early detection, Holz als Roh-und Werkstoff, 62, 5, 335–342, 2004.
  • 6. Orso S., Wegst U.G.K., Arzt E., The elastic modulus of spruce wood cell wall material measured by an in situ bending technique, Journal of Materials Science, 41, 16, 5122–5126, 2006.
  • 7. Mackenzie-Helnwein P., Mullner H.W., Eberhardsteiner J. ¨ et al., Analysis of layered wooden shells using an orthotropic elasto-plastic model for multi-axial loading of clear spruce wood, Computer Methods in Applied Mechanics and Engineering, 194, 21, 2661–2685, 2005.
  • 8. Boonstra M.J., Rijsdijk J.F., Sander C. et al., Microstructural and physical aspects of heat treated wood, Part 1. Softwoods, Maderas, Ciencia y Tecnolog´ıa, 8, 3, 193–208, 2006.
  • 9. Widehammar S., Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction, Experimental Mechanics, 44, 1, 44–48, 2004.
  • 10. Gindl W., The effect of lignin on the moisture-dependent behavior of spruce wood in axial compression, Journal of Materials Science Letters, 20, 23, 2161–2162, 2001.
  • 11. Gong M., Smith I., Effect of load type on failure mechanisms of spruce in compression parallel to grain, Wood Science and Technology, 37, 5, 435–445, 2004.
  • 12. Yildiz S., Gezer E.D., Yildiz U.C., Mechanical and chemical behavior of spruce wood modified by heat, Building and Environment, 41, 12, 1762–1766, 2006.
  • 13. Saavedra Flores E.I., Friswell M.I., Multi-scale finite element model for a new material inspired by the mechanics and structure of wood cell-walls, Journal of the Mechanics and Physics of Solids, 60, 7, 1296–1309, 2012.
  • 14. Vasic S., Smith I., Landis E., Finite element techniques and models for wood fracture mechanics, Wood Science and Technology, 39, 1, 3–17, 2005.
  • 15. Tabiei A., Wu J., Three-dimensional nonlinear orthotropic finite element material model for wood, Composite Structures, 50, 2, 143–149, 2000.
  • 16. Mackenzie-Helnwein P., Eberhardsteiner J., Mang H.A., A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details, Computational Mechanics, 31, 1–2, 204–218, 2003.
  • 17. Tan W., Blanton S., Bielech J.P., Summer planting performance of white spruce 1+ 0 container seedlings affected by nursery short-day treatment, New Forests, 35, 2, 187–205, 2008.
  • 18. Zhong W.Z., Song S.C., Huang X.C. et al., Research on static and dynamic mechanical properties of spruce wood by three loading directions, Chinese Journal of Theoretical and Applied Mechanics, 43, 6, 1141–1150, 2011.
  • 19. Shipsha A., Berglund L.A., Shear coupling effects on stress and strain distributions in wood subjected to transverse compression, Composites Science and Technology, 67, 7, 1362–1369, 2007.
  • 20. Rusinek A., Zaera R., Forquin P. et al., Effect of plastic deformation and boundary conditions combined with elastic wave propagation on the collapse site of a crash box, Thin-Walled Structures, 46, 10, 1143–1163, 2008.
  • 21. Keskin H., Atar M., Togay A., Impacts of impregnation with Imersol-Aqua on the compression strength of some solid wood materials, Construction and Building Materials, 22, 7, 1402–1408, 2008.
  • 22. Miltz J., Gruenbaum G., Evaluation of cushioning properties of plastic foams from compressive measurements, Polymer Engineering & Science, 21, 15, 1010–1014, 1981.
  • 23. Smith I., Landis E., Gong M., Fracture and Fatigue in Wood, John Wiley and Sons: Chichester, UK, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7011b2c-dc93-493a-b27c-f212aee99f50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.