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Cell detection and tracking in lab-on-a-chip devices 
by image processing
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This paper is devoted to the usage of image processing techniques in lab-on-a-chip devices for a cell
detection and tracking. Advantages and disadvantages of image processing in data acquisition from
lab-on-a-chip are described. A modified multiparametric object tracking method is presented.
The method was tested on the lab-on-a-chip setup with living euglena and has shown plausible
results for video with a low frame rate. 
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1. Introduction
Image processing of cells and microorganisms is an important tool in biological re-
searches. Due to randomness and variety of the microobjects, advanced processing of
the images is necessary to obtain useful and reliable data. Processing of static images
may give us such parameters as: position, size, shape, opacity, deformation and inner
structure of a single cell. Video processing provides a rate of change of quantities that
can be obtained from static images and allows to track cell appearing, division, disap-
pearing, movements, etc.

There are many methods and algorithms that enable image processing with special
attention paid to cells recognition, characterization and tracking. Some of them are lev-
el adjustments, thresholding, morphological transformations, edge detection, contour
search and segmentation. They can be divided into two groups. The first group (level
adjustment, desaturation and thresholding) relates to the image improvement methods
which adjust an image to prepare it for the further step. The second group is used to
detect objects on an image.

The level adjustment is used to increase contrast and brightness of the image. Level
adjustment maps the existing range of image pixel brightness values to the full possible
range of the used image format. The next method is thresholding. Thresholding trans-
forms all pixels that are brighter or darker than some specific value to white and all
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other pixels to black. It allows marking objects on an image with different brightness
level. It is used with color marking techniques. 

The morphological transformations are some simple operations based on the image
shape. It is normally performed on binary images. It needs two inputs, one is our orig-
inal image, and second one is called a structuring element or kernel which decides
about the nature of operation. Two basic morphological operators are erosion and di-
lation. Then its variant forms like opening, closing, gradient, etc., also come into play.
In [1] thresholding morphological transformations are used to detect E. coli cells and
measure their growth. Top hat transform is used in [2] to identify cytoplasmic regions
of interest after the watershed algorithm pass.

The edge detection algorithms are used when we have to find objects with different
brightness level or have uneven background on an image. The algorithms detect a rapid
change of brightness value and mark it with a bright color. The simplest edge detection
algorithm is the Canny algorithm. It uses Gaussian blur to remove the noise, calculates
intensity gradients and detects edges by a double thresholding pass, then applies non-max-
imum suppression to thin the edges and eliminates all false edges by hysteresis. 

Segmentation algorithms are intended to distinguish separate objects in groups.
Watershed algorithm inspired by a physical principle of water basins is used to separate
cells in groups, because cells are not completely connected. Feature based segmenta-
tion algorithm was used in [3] to distinguish biofilm and non-biofilm regions of an im-
age of V. cholerae colony. In [4] double watershed is applied in order to detect cells
on an image. It is also possible to distinguish cell phenotypes of eukaryotic cells using
a feature search [4].

Contour search algorithms are used when single or a few not connected cells are
presented on an image. Contours can be used to measure size, area, shape, position,
circumference and momentous of a single cell. After using watershed algorithms con-
tour search can be also used for wider range of images. Hough transform algorithm is
concerned with the identification of lines, circles, ellipses or arbitrary shapes using vot-
ing procedure. Hough transform is used in [5, 6] to detect circular shapes which are
assumed to be correspondingly yeast and HEK293T cells. When simple detection al-
gorithms are not enough, machine learning techniques are used as in [7] for detection
a nuclei in eukaryotic cells.

In many applications static parameters describing the cell/microorganism are used
as preliminary information and then applied to start object tracking of the cell. Tracking
algorithms are used to obtain movement of cells on timelapse records. In [8] authors
describe traditional approaches to object tracking used in the cell biology. As described
in [9] configuration, shape and quantity of bacteria can change between video frames,
which is a linear assignment problem so a multiparameter model with the cost matrix
is used.

Described algorithms are usually implemented in a form of an open-source or pro-
prietary software system [9–11] or as a set of procedures in MATLAB [3, 5, 6].
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Image processing tools are also widely used with lab-on-a-chip (LOC) devices.
Lab-on-a-chip devices are suitable for a sequential single cell analysis under specific
conditions. There are plenty examples of usage of image processing techniques in LOC:
in [6] and [11] small particles in picoliter drops can be detected; image processing is
used to track yeast cells in the microfluidic matrix [12] and to measure the cytotoxicity
based on fluorescence [13]. Lab-on-a-chip devices can contain complex structures
(channels, mixers, chambers, valves, etc.) which have an influence on image back-
ground uniformity and measurement conditions. That influence can be diminished by
using image processing methods. Pros and cons of the image processing for LOC are
briefly presented in Table 1.

Typical cell tracking algorithms applied in LOC can fail if recognition of a cell on
an image fails creating “hole” in a path. Cell tracking algorithms [9, 8, 14] are used to
track cells without considering their rotation and replacement in 3D space. Microor-
ganism can change its position and spatial configuration rapidly in a fraction of a sec-
ond and can change it in the third dimension. These situations should be taken into
account. What more and as it was mentioned earlier, lab-on-a-chip devices in most cas-
es consist of a set of chambers and channels. It causes change in contrast and brightness
over the image.

Therefore selection of the best detection approach to eliminate detection miss is
important to decrease the probability of a “hole” appearing in a path. It is also necessary
to enhance tracking algorithms to take into account cell rotation and movements in

T a b l e 1. Advantages and disadvantages of image processing in LOC. 

Pros Cons

1. High speed (throughput) in comparison to the
manual analysis of a single image.

2. Batch processing and automation. Series of
images and videos can be processed without
involving human.

3. High precision and uniformity. Algorithm works
in the same way for any input data. 

4. Visual error detection. False positive detection
can be seen by a naked eye on a resulting image.

1. Raster image contains a limited amount of infor-
mation depending on its resolution and color
depth. It means that low resolution images can
result in a big magnitude error if processed.

2. In some cases image processing algorithms are
time consuming. It is possible that high resolu-
tion images will not be processed fast enough
to match the speed of real-time capturing. High
speed image processing therefore requires hard-
ware implementation (e.g. FPGA) that is a less
universal solution.

3. Living cells are mostly semitransparent, hence
need to be labeled by dye and image improve-
ment techniques to enhance contrast.

4. Two-dimensional image of a cell is a projection
of three-dimensional cells, so it has some error 

5. It is hard to handle depth of field of an image
captured by an optical microscope, especially
when the cell is moving in 3D.
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3D space. In such cases, a shape of a cell can change, also cell image can be blurred.
Also information about the shape of a cell to predict its movement direction (e.g., euglena
is an elliptical microorganism with a flagellum on one end therefore it can move only
within the specific range of directions) should be used. Implementation of the multipa-
rameter model for fast moving small objects should be considered. In this paper we
propose the improved and optimized algorithm for cell tracking in LOC devices. 

2. Methodology
Applied measurement setup is described by PODWIN et al. [15]. Briefly, it consists of
lab-on-a-chip in a housing, light source, CCD camera (5 megapixels resolution,
non-cooled) and PC with special software (Fig. 1). As a model moving microorganism,
E. gracilis was used. The lab-on-a-chip has all glass structure with microchambers for
the euglena growth (channel depth – 5 µm, channel width – 500 µm, chamber depth
– 150 µm, and chamber dimensions – 4 × 2.4 mm2). 

In order to use described methods in practice, there was implemented the software.
The software was implemented using C++11 programming language to achieve high
working speed and throughput, Qt5 Framework for GUI and OpenCV3 programming
library for image processing tools. The software was tested on a computer with Intel
Core i5-2450M @ 2.50 GHz processor with 8 GB of RAM.

The developed software allows the user to open and process an image or video file
and save processing results in a plain text form.

3. Results
Five methods of cell detection were tested and implemented to diminish detection
misses.

The simple thresholding algorithm processes an image inversely thresholding it
with one threshold value. All pixels with brightness lower than threshold turn white

Fig. 1. Scheme of measurement setup with LOC for E. gracilis growth [9]. 
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or black, otherwise accordingly to Eq. (1), and are schematically presented in Fig. 2.
It is ineffective in case of brightness change over the image.

(1)

where: R – resulting image, G – initial image, t – threshold value, and i, j – pixel co-
ordinates on an image. 

The next method is multiple thresholding where an image is inversely thresholded
few times simultaneously with decreasing or increasing a threshold value within a spe-
cific range (Fig. 3). It is effective on images with brightness change over the image.

Next edge detection was tested. In this method, an image is processed by Canny
edge detection algorithm (Fig. 4). For this we need two threshold values, minVal and
maxVal. Any edges with intensity gradient higher than maxVal are sure to be edges
and those below minVal are sure to be non-edges, so discarded. Those which lie be-
tween these two thresholds are classified edges or non-edges based on their connec-
tivity. If they are connected to “sure-edge” pixels, they are considered to be part of
edges. Otherwise, they are also discarded. It is ineffective in case of image blur.

Fig. 2. Thresholding algorithm principle.
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In the watershed algorithm, an image is processed to distinguish cells that are gath-
ered in groups. Standard algorithm was extended by us with a preprocessing part. In
a regular watershed algorithm the initial objects have to be marked manually. Using
morphological operations we can detect objects automatically. In order to work with
a group of cells with different level of “connectedness” or on a different background
level, a multiple thresholding is used to detect a single cell in the group. This algorithm
is relatively slow and ineffective for small particles.

The background elimination algorithm uses morphological transformations to find
and remove non-uniform brightness of a background and small noise from an image
leaving only features of a specific size. It is ineffective for detection of objects which
are larger than approximately 20 × 20 pixels. 

While processing, we were faced with overexposed images with high brightness
and low contrast for which we used a minimum desaturation technique 

(2)

where: Gr – desaturated value, R, G, B – red, green and blue channels, respectively. It
allows us to find small intensity change in cases where simple contrast-brightness ad-
justment is not enough (Fig. 5). 

Fig. 4. Edge detection algorithm principle.
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Fig. 5. Images of LOC microchamber with euglenas – overexposed (a) and after image processing (b).
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Each algorithm results in a set of contours for each detected object (Fig. 6). Various
parameters of contours are calculated for further filtering of detection results and path
tracking. The parameters are: uncircularity – ratio between semi-major and semi-minor
axes of the ellipse, eccentricity of the ellipse, difference between areas of a contour
and the ellipse, area of the contour and diameter of the contour.

The second part of tracking enhancing is a segment connection. It uses an assign-
ment problem solving algorithm from [11] with modifications. Instead of using a sum
of distance and moments as a function 

φ = d + αi + βa + γs + δe (3)

being minimized we are using a sum of distance and such parameters as: ellipse incli-
nation i (an angle between long semi-major axis of the ellipse and the X axis), area a
(area of the contour), size s (size of the contour calculated as a mean of semi-major
and semi-minor ellipse axes), and eccentricity of the ellipse e. 

Each parameter is multiplied by a coefficient (α, β, γ, δ) which represents an in-
fluence of the parameter on an overall function value. User can switch between linear
and quadratic parameter values.

Other parameters such as intensity can be added further. Size, area and intensity
allow us to distinguish two cells on different depth level in non-planar lab-on-a-chip
devices. Inclination parameter increases the probability to distinguish two cells trajec-
tories which are crossing within a small distance but at the significant angle. 

Because of ellipse symmetry, the inclination value varies from 0 to 180 degrees.
To convert it to 0–360 range, we use linear regression of a few points in a path as
a vector g using an ordinary least squares estimator which allows retrieving a direction
of a cell movement (Fig. 7). After calculating of the vector g, we measure angles between
direct vector d, inverse vector i, regression vector g and reference vector r = (1, 0).
Depending on which angle is closer to a regression vector angle, we choose between
a direct and inverse vector as a vector of current cell direction.

Paths of cells are stored as arrays of points and related information. For each frame,
current points are obtained by detection, and previous points are received as endings
of each path. Therefore if a single path is not prolonged at the current frame, it can be
done so on the next one. It requires increasing of the maximum distance in target func-

a b

Fig. 6. Original image of euglena in LOC (a) and with determined parameters (b). 
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tion calculation which in its turn is compensated by other target function terms. There-
fore “holes” in a path caused by detection miss can be omitted. Using only two
consecutive frames, makes possible real-time video processing. 

Relatively short displacements of a cell mass center below the user-defined value
are merged together to eliminate small errors caused by frame to frame detection dif-
ferences. 

Fig. 7. Direction calculation scheme.
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T a b l e 2. Benchmark of detection methods in tracking (video: 36 seconds, 1024 × 768 pixels at 8 fps).

Algorithm Time [s] Maximum fps

Simple thresholding 4.6 62.6

Multiple thresholding 9.4 30.6

Edge detection 5.3 54.3

Watershed 15.93 18.07

Background elimination 7.9 36.45

Fig. 8. Cell tracks of euglena inside a lab-on-a-chip chamber (edge detection).
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The implemented algorithm was tested on a video with a frame rate equal to 8 fps
(Fig. 8). At that frame rate euglena movement has a form of step sequences. Never-
theless we can obtain distinguishable tracks. 

The comparative benchmark of applied algorithms was conducted (Table 2).
Benchmarking results show that four of five algorithms can handle real-time process-
ing at 24 fps frame rate. The watershed algorithm is relatively slow and need to be op-
timized or to be used on video streams with a lower data rate. 

4. Conclusions

The paper presented the usage of image processing in lab-on-a-chip-based measurements
setups for cell detection and tracking. Image processing helps to cope with the image
artifacts which emerge from lab-on-a-chip features. Various detection methods were
successfully tested to handle different measurement conditions caused by cells type
and LOC device structure. The developed modified multiparametric object tracking
method that solves a linear assignment problem is able to handle video stream pro-
cessing in real-time. Therefore such method is suitable to work with long term obser-
vations without need to store video data. 
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