PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on an Innovative FLEX Bicycle Frame with a Softtail Vibration Damping System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bicycles are gaining more and more popularity, especially in crowded cities where there is a problem with traffic jams and a limited number of parking spaces. The bicycles are also often used by mountain bikers during riding on off-road trails. In both cases, the important parameters are the stiffness of the bicycle frame, the weight of the bicycle, but also driving comfort. To improve comfort and reduce vibrations in the bicycle frame both front and rear shock absorbers are used. The use of traditional shock absorbers increase the weight of the bike and its price. The work characterizes a modern damping system, Softtail type, designed by AG Motors. In this case, the damping element (elastomer) was placed directly in the rear fork. Analyses of polyurethanes of various hardness were carried out in terms of the possibility of using them as a vibration damper. A numerical and experimental analysis of the bicycle frame was performed, adapted to the a new shock-absorber system. Strength, fatigue and impact tests were carried out in accordance with the relevant bicycle standards. Research has shown that the frame bicycle with the Softtail system, meets the requirements of the standards.
Twórcy
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Aleja Adama Mickiewicza 30, 30- 059 Kraków, Poland
  • Loop LLC, Aleja 29 Listopada 130, 31-406 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Aleja Adama Mickiewicza 30, 30- 059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Aleja Adama Mickiewicza 30, 30- 059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Aleja Adama Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AG Motors LLC, Debica, Podgrodzie 34B, 39-200 Podgrodzie, Poland
Bibliografia
  • 1. Hunt J.D., Abraham J.E. Influences on bicycle use. Transportation. 2007; 25;34(4): 453–470.
  • 2. Martens K. Promoting bike-and-ride: The Dutch experience. Transportation Research Part A: Policy and Practice. 2007; 41(4): 326–338.
  • 3. Gupta M.R. Analysis of Mountain Bike Frame By F.E.M. IOSR Journal of Mechanical and Civil Engineering. 2016; 13(2): 60–71.
  • 4. Vanwalleghem J., Mortier F., De Baere I., Loccufier M., Van Paepegem W. Design of an instrumented bicycle for the evaluation of bicycle dynamics and its relation with the cyclist’s comfort. Procedia Engineering. 2012 ;34: 485–490.
  • 5. Christiaans H.H.C.M., Bremner A. Comfort on bicycles and the validity of a commercial bicycle fitting system. Applied Ergonomics. 1998; 29(3): 201–211.
  • 6. Needle S.A., Hull M.L. An Off-Road Bicycle With Adjustable Suspension Kinematics. Journal of Mechanical Design. 1997; 1;119(3): 370–375.
  • 7. De Lorenzo D.S., Hull M.L. Quantification of Structural Loading During Off-Road Cycling. Journal of Biomechanical Engineering. 1999; 1;121(4): 399–405.
  • 8. Nielens H., Lejeune T. Bicycle Shock Absorption Systems and Energy Expended by the Cyclist: Sports Medicine. 2004; 34(2): 71–80.
  • 9. Hsiao S.W., Ko Y.C. A study on bicycle appearance preference by using FCE and FAHP. International Journal of Industrial Ergonomics. 2013; 43(4): 264–273.
  • 10. Wu C.C., Ballance D. Static and free vibration analyses of a bike using finite element method. International Journal of Engineering Research. 2015; 1(7): 60–86.
  • 11. Ferraresi C., Garibaldi L., Perocchio D., Piombo B.A.D. Dynamic behavior and optimization of frames for road and mountain bikes. In San Jose, CA, United States; 1998.
  • 12. Wang J.H., Zhao J.N., Zhao Y.S., Wang Z., Guo D.L. Simulation about Sports Bicycle Frame Based on the Experiments. AMM. 2010; 37–38: 1142–1147.
  • 13. Covill D., Begg S., Elton E., Milne M., Morris R., Katz T. Parametric Finite Element Analysis of Bicycle Frame Geometries. Procedia Engineering. 2014; 72: 441–446.
  • 14. Lin C.C., Huang S.J., Liu C.C. Structural analysis and optimization of bicycle frame designs. Advances in Mechanical Engineering. 2017; 9(12): 168781401773951.
  • 15. Devaiah B.B., Purohit R., Rana R.S., Parashar V. Stress Analysis of A Bicycle Frame. Materials Today: Proceedings. 2018; 5(9): 18920–18926.
  • 16. Akhyar, Husaini, Iskandar H., Ahmad F. Structural Simulations of Bicycle Frame Behaviour under Various Load Conditions. MSF. 2019; 961: 137–147.
  • 17. Davis R., Hull M.L. Design of Aluminum Bicycle Frames. Journal of Mechanical Design. 1981; 1; 103(4): 901–907.
  • 18. Rontescu C., Cicic D.T., Amza C.G., Chivu O.R., Dobrota D. Choosing the optimum material for making a bicycle frame. Metalurgija -Sisak then Zagreb. 2015; 54(4): 679–682.
  • 19. Suyitno, Salim U.A. Fabrication of Bicycle Frame of A356 Aluminum Alloys by Using Sand Casting. AMM. 2015; 758: 131–135.
  • 20. Sarath P., Akash D., Hrishikesh H., Nimisha S.D., Jinuchandran. Stress Analysis of Bicycle Frame using Different Materials by FEA. GRD Journal for Engineering. 2021; 6(7): 14–20.
  • 21. Covill D., Blayden A., Coren D., Begg S. Parametric Finite Element Analysis of Steel Bicycle Frames: The Influence of Tube Selection on Frame Stiffness. Procedia Engineering. 2015; 112: 34–39.
  • 22. Karchin A., Hull M.L. Experimental Optimization of Pivot Point Height for Swing-Arm Type Rear Suspensions in Off-Road Bicycles. Journal of Biomechanical Engineering. 2002; 1; 124(1): 101–106.
  • 23. Sani M.S.M., Nazri N.A., Zahari S.N., Abdullah N.A.Z., Priyandoko G. Dynamic Study of Bicycle Frame Structure. IOP Conf Ser: Mater Sci Eng.2016; 160: 012009.
  • 24. Khutal K., Kathiresan G., Ashok K., Simhachalam B., Davidson Jebaseelan D. Design Validation Methodology for Bicycle Frames Using Finite Element Analysis. Materials Today: Proceedings. 2020; 22: 1861–1869.
  • 25. Arola D., Reinhall P.G., Jenkins M.G., Iverson S.C. An experimental analysis of a hybrid bicycle. Exp Techniques. 1999; 23(3): 21–24.
  • 26. Champoux Y., Vittecoq P., Maltais P., Auger E., Gauthier B. Measuring the dynamic structural load of an off-road bicycle frame. Experimental Techniques. 2004; 28(3): 33–36.
  • 27. Champoux Y., Richard S., Drouet J.M. Bicycle Structural Dynamics. Sound and Vibration. 2007; 41(7): 16–22.
  • 28. Koellner A., Cameron C.J., Battley M.A. Measurement and Analysis System for Bicycle Field Test Studies. Procedia Engineering. 2014; 72: 350–355.
  • 29. Cheng Y.C., Lee C.K., Tsai M.T. Multi-objective optimization of an on-road bicycle frame by uniform design and compromise programming. Advances in Mechanical Engineering. 2016; 1; 8(2): 168781401663298.
  • 30. Levy M., Smith G.A. Effectiveness of vibration damping with bicycle suspension systems. Sports Eng. 2005; 8(2): 99–106.
  • 31. Demir H., Gündüz S. The effects of aging on machinability of 6061 aluminium alloy. Materials & Design. 2009; 30(5): 1480–1483.
  • 32. Ozturk F., Sisman A., Toros S., Kilic S., Picu R.C. Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Materials and Design. 2010; 31: 972–975.
  • 33. Rajaa S.M., Abdulhadi H.A., Jabur K.S., Mohammed G.R. Aging Time Effects on the Mechanical Properties of Al 6061-T6 Alloy. Eng Technol Appl Sci Res. 2018; 18; 8(4): 3113–3115.
  • 34. Ahmad R., Bakar M.A. Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method. Materials and Design. 2011; 32: 5120–5126.
  • 35. Perez JS, Ambriz RR, Lopez FFC, Vigueras DJ. Recovery of Mechanical Properties of a 6061-T6 Aluminum Weld by Heat Treatment After Welding. Metallurgical and Materials Transactions A. 2016; 47: 3412–3422.
  • 36. Fadaeifard F., Matori K.A., Garavi F., Al-Falahi M., Sarrigani G.V. Effect of post weld heat treatment on microstructure and mechanical properties of gas tungsten arc welded AA6061-T6 alloy. Transactions of Nonferrous Metals Society of China. 2016; 26: 3102–3114.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6f12dc2-d2ec-4dee-a911-6f1f3e49c7b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.