PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cadmium Immobilization in the Rice – Paddy Soil with Biochar Additive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cadmium (Cd) is toxic for humans, but its effects on the yield and quality of rice under contaminated irrigation conditions remain uncertain. In this study, paddy soils in the Red River Delta (Vietnam) were selected for experiments with the purpose of understanding the effects of Cd contaminated irrigation water on growth, yields, and grain Cd accumulation. In addition, biochar was produced from rice husk (BRH) and rice straw for preventing Cd infiltration into rice was also studied in this experiment. A field experiment was established with applicated BRH and straw into polluted paddy soil, as a result the Cd content in grains reduced significantly. The Cd contaminated soil was added to the BRH and rice straw (RS) with six ratios, including: (1) RS 2.5%, (2) BRH 2.5%, (3) RS-BRH: 1.25–1.25%, (4) RS 5.0%, (5) BRH 5.0%, (6) RS-BRH: 2.5–2.5%, (w:w). Besides, three content levels 0.01–0.05–0.5 mg/L of Cd in irrigation water were applied throughout crop season. The results showed that the Cd accumulation in rice was in the following order: roots > stems > seeds. With 3 contaminated irrigation levels which were applied, the Cd concentrations of 0.05 mg/L and 0.5 mg/L affected plant height and yield. However, the Cd content in grains under contaminated soil condition can be controlled from 82.47–83.94% by applying a BRH ratio from 2.5–5% (w:w).
Słowa kluczowe
Rocznik
Strony
85--95
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • Center of Science, Technology and Environment, 149 Giang Vo Str., Dong Da, Ha Noi, Vietnam
  • Thuyloi University, 175 Tay Son Str., Dong Da, Ha Noi, Vietnam
  • Thuyloi University, 175 Tay Son Str., Dong Da, Ha Noi, Vietnam
  • Thuyloi University, 175 Tay Son Str., Dong Da, Ha Noi, Vietnam
  • Thuyloi University, 175 Tay Son Str., Dong Da, Ha Noi, Vietnam
Bibliografia
  • 1. Adil M.F., Sehar S., Chen G., Chen Z.H., Jilani G., Chaudhry A.N., Shamsi I.H. 2020. Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological / ultrastructural adjustments. Ecotoxicology and Environmental Safety, 190, 110076.
  • 2. Banerjee A., Samanta S., Singh A., Roychoudhury A. 2020. Deciphering the molecular mechanism behind stimulated co-uptake of arsenic and fluoride from soil, associated toxicity, defence and glyoxalase machineries in arsenic-tolerant rice. Journal of Hazardous Materials, 390, 121978.
  • 3. Bari M.A., Akther M.S., Reza M.A., Kabir A. H. 2019. Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. Plant Physiology and Biochemistry, 136, 22–33.
  • 4. Bashir S., Shaaban M., Mehmood S., Zhu J., Fu Q., Hu H. 2018. Efficiency of C3 and C4 Plant Derived-Biochar for Cd Mobility, Nutrient Cycling and Microbial Biomass in Contaminated Soil. Bulletin of Environmental Contamination and Toxicology, 100(6), 834–838.
  • 5. Bermudez G.M.A., Jasan R., Plá R., Pignata M.L. 2012. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. Journal of Hazardous Materials, 213–214, 447–456.
  • 6. Bian R., Chen D., Liu X., Cui L., Li L., Pan G., Xie D., Zheng J., Zhang X., Zheng J., Chang A. 2013. Biochar soil amendment as a solution to prevent Cdtainted rice from China: Results from a cross-site field experiment. Ecological Engineering, 58, 378–383.
  • 7. Bui A.T.K., Duong L.T., Nguyen M.N. 2020. Accumulation of copper and cadmium in soil–rice systems in terrace and lowland paddies of the Red River basin, Vietnam: the possible regulatory role of silicon. Environmental Geochemistry and Health, 42(11), 3753–3764.
  • 8. Catalan J., Camarero L., Felip M., Pla S., Ventura M., Buchaca T., Bartumeus F., De Mendoza G., Miró A., Casamayor E.O., Medina-Sánchez J.M., Bacardit M., Altuna M., Bartrons M., De Quijano D.D. 2006. High mountain lakes: Extreme habitats and witnesses of environmental changes. Limnetica, 25(1–2).
  • 9. Chaffei C., Pageau K., Suzuki A., Gouia H., Ghorbel M.H., Masclaux-Daubresse C. 2004. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant and Cell Physiology, 45(11), 1681–1693.
  • 10. Chen T., Chen Z. 2002. Cadmium adsorption in soil influenced by dissolved organic matter derived from rice straw and sediment. Chinese Journal of Applied Ecology, 13(2).
  • 11. Di Pierro M., Cheng R.R., Aiden E.L., Wolynes P.G., Onuchic J.N. 2017. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture. Proceedings of the National Academy of Sciences of the United States of America, 114(46).
  • 12. Dong J., Wu F.B., Zhang G.P. 2005. Effect of cadmium on growth and photosynthesis of tomato seedlings. Journal of Zhejiang University: Science, 6B(10), 974–980.
  • 13. Dražić G., Mihailović N., Stojanović Z. 2004. Cadmium toxicity: The effect on macroand micronutrient contents in soybean seedlings. Biologia Plantarum, 48(4), 605–607.
  • 14. Etesami H., Jeong B.R. 2018. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147, 881–896.
  • 15. Guerriero G., Hausman J.F., Legay S. 2016. Silicon and the plant extracellular matrix. In Frontiers in Plant Science, 7.
  • 16. Honma M. 2017. Agricultural policy in Japan. In Handbook of International Food and Agricultural Policies, 3.
  • 17. Huang R., Lan M., Liu J., Gao M. 2017. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning. Environmental Science and Pollution Research, 24(36), 1–11.
  • 18. Khan A., Khan S., Alam M., Khan M.A., Aamir M., Qamar Z., Rehman Z.U., Perveen S. 2016. Toxic metal interactions affect the bioaccumulation and dietary intake of macroand micro-nutrients. Chemosphere, 146, 121–128.
  • 19. Khan A., Khan S., Khan M.A., Qamar Z., Waqas M. 2015. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research, 22(18), 13772–13799.
  • 20. Li P., Song A., Li Z., Fan F., Liang Y. 2015. Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant and Soil, 397(1–2), 289–301.
  • 21. Li S., Barreto V., Li R., Chen G., Hsieh Y.P. 2018. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 133, 136–146.
  • 22. Liang Y., Sun W., Zhu Y.G., Christie P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147(2), 422–428.
  • 23. Liang Y., Wong J.W.C., Wei L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58(4), 475-483.
  • 24. Liu H., Zhang Y., Zhou X., You X., Shi Y., Xu J. 2017. Source identification and spatial distribution of heavy metals in tobacco-growing soils in Shandong province of China with multivariate and geostatistical analysis. Environmental Science and Pollution Research, 24(6), 5964–5975.
  • 25. Lu Y., Wang Q.F., Li J., Xiong J., Zhou L.N., He S.L., Zhang J.Q., Chen Z.A., He S.G., Liu H. 2019. Effects of exogenous sulfur on alleviating cadmium stress in tartary buckwheat. In Scientific Reports, 9(1), 7397.
  • 26. Majumdar A., Upadhyay M.K., Kumar J.S., Sheena Barla A., Srivastava S., Jaiswal M.K., Bose S. 2019. Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin. Ecotoxicology and Environmental Safety, 180, 770–779.
  • 27. Peng H., Chen Y., Weng L., Ma J., Ma Y., Li Y., Islam M.S. 2019. Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Science of The Total Environment, 660, 776–786.
  • 28. Rao Z.X., Huang D.Y., Wu J.S., Zhu Q.H., Zhu H.H., Xu C., Xiong J., Wang H., Duan M.M. 2018. Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30-year fertilization and its impact on Cd accumulation in rice plant. Environmental Pollution, 239, 198–204.
  • 29. Rizwan M., Ali S., Adrees M., Ibrahim M., Tsang D C.W., Zia-ur-Rehman M., Zahir Z.A., Rinklebe J., Tack F.M.G., Ok Y.S. 2017. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, 90–105.
  • 30. Rizwan M., Ali S., Adrees M., Rizvi H., Zia-urRehman M., Hannan F., Qayyum M.F., Hafeez F., Ok Y.S. 2016. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research, 23(18), 17859–17879.
  • 31. Roth U., Von Roepenack-Lahaye E., Clemens S. 2006. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd 2+. Journal of Experimental Botany, 57(15), 4003-4013.
  • 32. Ryan J., Estefan G., Rashid A. 2001. Soil and plant analysis laboratory manual. ICARDA and NARC.
  • 33. Sebastian A., Prasad M.N.V. 2014. Cadmium minimization in rice. A review. In Agronomy for Sustainable Development, 34(1), 155–173.
  • 34. Seyfferth A.L., Morris A.H., Gill R., Kearns K.A., Mann J.N., Paukett M., Leskanic C. 2016. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain. Journal of Agricultural and Food Chemistry, 64(19), 3760–3766.
  • 35. Shim J., Shea P.J., Oh B.T. 2014. Stabilization of Heavy Metals in Mining Site Soil with Silica Extracted from Corn Cob. Water, Air, and Soil Pollution, 225(10), 2152.
  • 36. Street R.A., Kulkarni M.G., Stirk W.A., Southway C., Van Staden J. 2010. Effect of cadmium on growth and micronutrient distribution in wild garlic (Tulbaghia violacea). South African Journal of Botany, 76(2), 332-336.
  • 37. Tian Z.R., Sharma A., Nozari A., Subramaniam R., Lundstedt T., Sharma H.S. 2012. Nanowired drug delivery to enhance neuroprotection in spinal cord injury. CNS & Neurological Disorders Drug Targets, 11(1), 86-95.
  • 38. Tran T.A., Popova L.P. 2013. Functions and toxicity of cadmium in plants: Recent advances and future prospects. Turkish Journal of Botany, 37(1), 1-13.
  • 39. Uraguchi S., Mori S., Kuramata M., Kawasaki A., Arao T., Ishikawa S. 2009. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60(9), 2677-2688.
  • 40. Verbruggen N., Hermans C., Schat H. 2009. Mechanisms to cope with arsenic or cadmium excess in plants. In Current Opinion in Plant Biology, 12(3), 364-372.
  • 41. Wang H.Y., Wen S.L., Chen P., Zhang L., Cen K., Sun G. X. 2016. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Environmental Science and Pollution Research, 23(4), 3781–3788.
  • 42. Wang Y., Stass A., Horst W.J. 2004. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiology, 136(3), 3762–3770.
  • 43. White P.J., Brown P.H. 2010. Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073-1080.
  • 44. Wu W.Z., Zhan X.H., Zhou L.X. 2007. Effect of dissolved organic matter on phenanthrene sorptiondesorption in soil system. Huanjing Kexue/Environmental Science, 28(2), 66-69.
  • 45. Xie L.H., Tang S.Q., Wei X.J., Shao G.N., Jiao G.A., Sheng Z.H., Luo J., Hu P.S. 2017. The cadmium and lead content of the grain produced by leading Chinese rice cultivars. Food Chemistry, 217, 217–224.
  • 46. Xu P., Sun C.X., Ye X.Z., Xiao W.D., Zhang Q., Wang Q. 2016. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety, 132, 94–100.
  • 47. Yu H.Y., Ding X., Li F., Wang X., Zhang S., Yi J., Liu C., Xu X., Wang Q. 2016. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon. Environmental Pollution, 215, 258–265.
  • 48. Yuan J.H., Xu R.K., Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497.
  • 49. Zhang G., Fukami M., Sekimoto H. 2002. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research, 77(2–3), 93-98.
  • 50. Zhu H., Chen C., Xu C., Zhu Q., Huang D. 2016. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 219, 99–106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6ef3c39-03cb-470a-9cc1-8132dccd5809
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.