PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CO2 laser spot welding of thin sheets AISI 321 austenitic stainless steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present work aims to investigate the influence of CO2 laser spot welding (LSW) parameters on welding profile and mechanical properties of lap joint of AISI 321 thin sheet metals, and analyze the welding profile numerically by finite element (FE) method. Design/methodology/approach: The weld carried out using 150 W CO2 continues wave laser system. The impact of exposure time and laser power on the welding profile was investigated using an optical microscope. Microhardness and tensile strength tests were used to evaluate the mechanical properties of the joint. Ansys software was utilized to simulate the welding profile numerically. Findings: The results revealed that 2 s exposure time and 50 W power have led to uniform welding profile and highest shear force (340 N), lower hardness gradient across the heat affected zone (HAZ) and fusion zone (FZ). Finite element (FE) analysis of the welding profile showed good agreement with experimental analysis. Research limitations/implications: The selection of laser spot welding parameters for thin sheet metal was critical due to the probability of metal vaporisation with extra heat input during welding. Practical implications: Laser welding of AISI 321 steel is used in multiple industrial sectors such as power plants, petroleum refinement stations, pharmaceutical industry, and households. Thus, selecting the best welding parameters ensures high-quality joint. Originality/value: The use of CO2 laser in continuous wave (CW) mode instead of pulse mode for spot welding of thin sheet metal of AISI 321 austenitic stainless steel consider a real challenge because of the difficulty of control the heat input via proper selection of the welding parameters in order to not burn the processed target. Besides, the maintenance is easier and operation cost is lower in continuous CO2 than pulse mode.
Rocznik
Strony
68--77
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Department of Materials Engineering, University of Diyala, Diyala, Iraq
autor
  • Department of Materials Engineering, University of Diyala, Diyala, Iraq
  • Department of Materials Engineering, University of Diyala, Diyala, Iraq
autor
  • Department of Mechanical Engineering, University of Diyala, Diyala, Iraq
autor
  • Department of Electrical Power and Machines Engineering, University of Diyala, Diyala, Iraq
autor
  • Ministry of Oil, Midland Oil Company, Baghdad, Iraq
autor
  • Department of Materials Engineering, University of Kufa, Najaf, Iraq
autor
  • Department of Mechanical Engineering, University of Diyala, Diyala, Iraq
Bibliografia
  • [1] M.V. Larin, Y.B. Pevzner, O.I. Grininand, I.T. Lasota, The use of single-mode fiber laser for welding of stainless steelthin thickness, IOP Conference Series: Journal of Physics 1109 (2018) 012036. DOI: https://doi.org/10.1088/1742-6596/1109/1/012036
  • [2] A. Klimpel, A. Lisiecki, T. Figiel, High power diode laser welding of austenitic steel, welding of austenitic steels, Welding International 17/3 (2003) 189-195. DOI: https://doi.org/10.1533/wint.2003.3076
  • [3] A. Klimpel, A. Lisiecki, M. Szczyrba, Diode Laser Welding of Duplex Steel with addition of activating flux, Welding International 17/9 (2003) 684-692. DOI: https://doi.org/10.1533/wint.2003.3196
  • [4] J. Adamiec, A. Grabowski, A. Lisiecki, Welding of an intermetallic Fe-Al phase-based alloy with a diode laser, Proceedings of the International Society for Optical Engineering, Laser Technology VII, Applications of Lasers 5229 (2003) 219-222. DOI: https://doi.org/10.1117/12.520720
  • [5] F. Bachman, Industrial applications of high power diode lasers in materials processing, Applied Surface Science 208/1 (2003) 125-136. DOI: https://doi.org/10.1016/S0169-4332(02)01349-1
  • [6] U. Dilthey, A. Risch, Laser welding of stainless steels and stainless low-alloy material combinations, Welding in the World 36 (1995) 135-142.
  • [7] Y. Tzeng, Gap-free lap welding of zinc-coated steel using pulsed CO2 laser, International Journal of Ad- vanced Manufacturing and Technology 29 (2006) 287¬295. DOI: https://doi.org/10.1007/s00170-005-2522-3
  • [8] F. Curcio, G. Daurelio, F. Memola Capece Minutolo, F. Caiazzo, On the welding of different materials by diode laser, Journal of Materials Processing and Technology 175/1-3 (2006) 83-89. DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.026
  • [9] A.A. Shehab, S.K. Sadrnezhaad, A.K. Mahmoud, M.J. Torkamany, A.H. Kokabi, M. Fakouri Hasanabadi, Pulsed Nd: YAG laser dissimilar welding of Ti/Al3105 alloys, Scientia Iranica: Transactions on Mechanical Engineering (B) 27/7 (2020) 1982-1994. DOI: https://doi.org/10.24200/SCI.2019.52217.2600
  • [10] ASM: Metals Handbook: Volume 1, Properties and Selection: Irons, Steels, and High-Performance Alloys, Second Edition, ASM International, USA, 1992, 150-1850.
  • [11] A. Klimpel, A. Lisiecki, November Laser welding of butt joints of austenitic stainless steel AISI 321 sheets 0.5 mm and 1.0 mm thick using a high power diode laser HPDL, Journal of Achievement In Materials and Manufacturing Engineering 25/1 (2007) 63-66.
  • [12] E.M. Stanciu, A. Pascu, M.H. Tierean, I.C. Roata, I. Voiculescu, I. Hulka, C. Croitoru, Dissimilar Laser Welding of AISI 321 and AISI 1010, Technical Gazette 25/2 (2018) 344-349. DOI: https://doi.org/10.17559/TV-20160722151049
  • [13] A. Hussain, A.H. Hamdani, R. Akhter, CO2 laser welding of AISI 321stainless steel, IOP Conference Series: Materials Science and Engineering 60 (2014) 012042. DOI: https://doi.org/1O.1O88/1757-899X/60/1/012042
  • [14] W. Meng, Z. Xu, Q. Ma, X. Yin, J. Fang, Pulse fiber laser welding of AISI 321-AISI 405 stainless steel thick plates butt joints, Journal of Materials Processing Technology 271 (2019) 214-225. DOI: https://doi.org/10.1016/jjmatprotec.2019.04.013
  • [15] A.A. Shehab, S.K. Sadrnezhaad, M.J. Torkamany, M. Fakouri Hasanabadi, M. Alali, A.K. Mahmoud, M.H. Abass, A.H. Kokabi, Ring-like laser spot welding of Ti grade2 to AAl3105-O using AlSiMg filler metal, Optik 206 (2020) 163630. DOI: https://doi.org/10.1016/j.ijleo.2019.163630
  • [16] A.K. Mahmoud, Z.A. Taha, A.A. Shehab, Temperature Distribution Simulation for Pulsed Laser Spot Welding of Dissimilar Stainless Steel AISI302 to Low Carbon Steel AISI1008, Advanced Materials Research 445 (2012) 412-417. DOI: https://doi.org/10.4028/www.scientific.net/AMR.445.412
  • [17] A.K. Mahmoud, Z.A. Taha, A.A. Shehab, Building a simulation model for the prediction of temperature distribution in pulsed laser spot welding of dissimilar low carbon steel 1020 to aluminum alloy 6061, American Institute of Physics Conference Proceedings 1315 (2011) 1425-1430. DOI: https://doi.org/10.1063Z1.3552386
  • [18] J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application, First Edition, 2005.
  • [19] W. Han, Computational and Experimental Investiga- tions of Laser Drilling and Welding for Microelectronic Packaging, Ph.D. Thesis, Worcester Polytechnic Institute, U.S.A., 2004.
  • [20] A. De, S.K. Marti, C.A. Walsh, H.K.D.H. Bhadeshia, Finite Element Simulation of Laser Spot Welding, Science and Technology of Welding and Joining 8/5 (2003) 377-384. DOI: https://doi.org/10.1179/136217103225005570
  • [21] W.S. Chang, S.J. Na, A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro- joining, Journal of Material Processing Technology 120/1-3 (2002) 208-214. DOI: https://doi.org/10.1016/S0924-0136(01)00716-6
  • [22] Y.A. Cengel, Heat transfer: A practical approach, McGrow Hill Inc, U.S.A. 2002.
  • [23] W.M. Steen, Laser Material Processing, Fourth Edition, Springer-Verlag, London, 2010.
  • [24] J.F. Ready, D.F. Farson, T. Feeley (eds.), LIA Handbook of Laser Materials Processing. Laser Institute of America, USA, 2001.
  • [25] M. Abass, M. Alali, W. Abbas, A. Shehab, Study of solidification behaviour and mechanical properties of arc stud welded AISI 316L stainless steel, Journal of Achievements in Materials and Manufacturing Engineering 97/1 (2019) 5-14. DOI: https://doi.org/10.5604/01.3001.0013.7944
  • [26] H. Ming, Z. Zhang, J. Wang, E.-H. Han, W. Ke, Microstructural characterization of an SA508-309L/ 308L-316L domestic dissimilar metal welded safe-end joint, Materials Characterization 97 (2014) 101-115. DOI: https://doi.org/10.1016Zi.matchar.2014.08.023
  • [27] Y. Ai, X. Shao, P. Jiang, P. Li, Y. Liu, W. Liu,Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials, Optics and Lasers in Engineering 86 (2016) 62-74. DOI: https://doi.org/10.1016/i.optlaseng.2016.05.011
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6ec926a-3245-463a-b467-083d8ffb3b1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.