PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neurocontrolled car speed system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The features of the synthesis of neural controllers for the car speed control system are considered in this article. The task of synthesis is to determine the weight coefficients of neural networks that provide the implementation of proportional and proportional-integralderivative control laws. The synthesis of controllers is based on an approach that uses a reversed model of the standard. A model of the car speed control system with the use of permitting subsystems has been developed, with the help of the synthesized controller that is connected under certain specified conditions. With the iterative programming and mathematical modeling environment in MATLAB, and using the Simulink package, a structural scheme for controlling the speed of the car was constructed and simulated using synthesized neural controllers.
Twórcy
  • Computerized Automatic Systems Department, Computer Technology, Automation and Metrology Institute, Lviv Polytechnic National University, 12 Bandera str., Lviv 79013, Ukraine
  • Intelligent Mechatronics and Robotics Department, Computer Technology, Automation and Metrology Institute, Lviv Polytechnic National University, 3 kn. Romana str., Lviv 79008, Ukraine
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Gdańsk 80-233, Poland
Bibliografia
  • [1] F. J. Maldonado, S. Oonk, T. Politopoulos, “Enhancing Vibration Analysis by Embedded Sensor Data Validation Technologies”, IEEE Instrumentation & Measurement Magazine, vol.16, no. 4, August 2013, pp. 50-60, doi: 10.1109/MIM.2013.6572957.
  • [2] C. Teal, C. Satterlee, “Managed Aircraft Wiring Health Directly Relates to Improved Avionics Performance”, Proceedings of 19th Digital Avionics Systems Conference. (Cat. No.00CH37126), 7-13 October 2000, doi: 10.1109/DASC.2000.886926.
  • [3] L. Silver, D. W. Christenson, “Developing a Stable Architecture for Interfacing Aircraft to Commercial Personal Computers”, Proceedings AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference, 22-25 September 2003, doi: 10.1109/AUTEST.2003.1243560.
  • [4] K. F. Roosendaal, D. W. Christenson, “Embedded Computer Software Loader/verifier Implementation Using a Hardware and Software Architecture Based upon Best Practices Derived from Multiple Spiral Developments and the Joint Technical Architecture”, Proceedings AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference, 22-25 September 2003, doi: 10.1109/AUTEST.2003.1243622.
  • [5] A. N. Srivastava, R. W. Mah, C. Meyer, “Integrated Vehicle Health Management”, National Aeronautics and Space Administration, Aeronautics Research Mission Directorate, Aviation Safety Program, Technical Plan, Version 2.03, November 2009, pp. 1-73.
  • [6] F. Gustafsson, “Automotive Safety Systems, Replacing Costly Sensors with Software Algorithms”, IEEE Signal Processing Magazine, vol. 26, 2009, pp. 32-47.
  • [7] A. Leone, “Automotive Design: At the Beginning Only was Light”, IEEE Instrumentation & Measurement Magazine, vol. 22, iss. 1, February 2019, pp. 28-32, doi: 10.1109/MIM.2019.8633348.
  • [8] D. Serritiello, “Human-machine Interaction, Methods and International Standards”, IEEE Instrumentation & Measurement Magazine, vol. 22, iss. 1, February 2019, pp. 33-35, doi: 10.1109/MIM.2019.8633349.
  • [9] ISO 15006:2011, “Road Vehicles Ergonomics Aspects of Transport Information and Control Systems: Specifications for In-vehicle Auditory Presentation”, International Organization of Standardization, https://www.iso.org/standard/55322.html.
  • [10] A. M. Di Natale, “The Evolution of Passive Safety in I&M”, IEEE Instrumentation & Measurement Magazine, vol.22, iss. 1, February 2019, pp. 5-10, doi: 10.1109/MIM.2019.8633324.
  • [11] S. Stahlschmidt, A. Gromer, M. Walz, “WorldSID 50th vs. ES-2. A Comparison Based on Simulations”. Proceedings LS-Dyna Forum, Bamberg 2010, pp. 13-32.
  • [12] M. Dudzik, “Methodology of calculating maximal possible acceleration limited by the adhesion condition for a traction vehicle on the example of the FLIRT ED 160 model produced by stadler”, 2018 International Symposium on ElectricalMachines (SME), Andrychów, Poland, 10 -13 June 2018, 2018, doi: 10.1109/ISEM.2018.8442891.
  • [13] C. R. Parkey, D. B. Chester, M. T. Hunter, W. B. Mikhael, “Simulink modeling of analog to digital converters for post conversion correction development and evaluation”, IEEE 54-th International Midwest Symposium on Circuits and Systems (MWSCAS), 2011, pp. 1-4, 7-10, doi: 10.1109/MWSCAS.2011.6026634.
  • [14] D. A Tagliente, C. Lyding, J. Zawislak, D. Marston. “Expanding Emulation from Test to Create Realistic Virtual Training Environments”, 2014 IEEE AUTOTEST, 15-18 September 2014, doi: 10.1109/AUTEST.2014.6935140.
  • [15] I. McGregor, “The Relationship between Simulation and Emulation”, Proceedings of 2002 Winter Simulation Conference, vol. 2, 8-11 December 2002, pp. 1683-1688, doi: 10.1109/WSC.2002.1166451.
  • [16] W. J. Headrick G. Garcia, “Automated Configuration of Modern ATE”, IEEE Instrumentation & Measurement Magazine, vol. 21, iss. 4, August 2018, pp. 22-26, doi: 10.1109/MIM.2018.8423742.
  • [17] J. W. Sheppard, S. Strasser, “Multiple Fault Diagnosis Using Factored Evolutionary Algorithms”, IEEE Instrumentation & Measurement Magazine, vol. 21, iss. 4, August 2018, pp. 27-38, doi: 10.1109/MIM.2018.8423743.
  • [18] H. King, N. Fortier, J. W. Sheppard, “An AI-ESTATE Conformant Interface for Net-Centric Diagnostic and Prognostic Reasoning”, IEEE Instrumentation & Measurement Magazine, vol. 18, iss. 4, August 2015, pp. 18-24, doi: 10.1109/MIM.2015.7155768.
  • [19] IEEE Standard for Artificial Intelligence Exchangeand Service Tie to All Test Environments (AI-ESTATE), IEEE Standard 1232, 2010, https://standards.ieee.org/standard/1232-2010.html.
  • [20] M. Galvani, “History and Future of Driver Assistance”, IEEE Instrumentation & Measurement Magazine, vol. 22, iss. 1, February 2019, pp. 11-16, doi: 10.1109/MIM.2019.8633345.
  • [21] A. Secondi, “Vehicle Suspension”, IEEE Instrumentation & Measurement Magazine, vol. 22, iss. 1, February 2019, pp. 19-27, doi: 10.1109/MIM.2019.8633347.
  • [22] T. D. Gillespie, Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, Inc.: Warrendale, PA, USA, 1992.
  • [23] E. Helmers, P. Marx, “Electric cars: technical characteristics and environmental impacts”,Environmental Sciences: Europe 24, 14, 2012, doi: 10.1186/2190-4715-24-14.
  • [24] G. Zhou “A Neural Network Approach to Fault Diagnosis for Power Systems”, Proceedings of TENCON ‘93. IEEE Region 10 International Conference on Computers, Communications and Automation, 19-21 October 1993, pp. 885-888, doi: 10.1109/TENCON.1993.320155.
  • [25] M. Nakonechnyi, O. Ivakhiv, T. Repetylo, I. Strepko, “Car speed control with neurocontroller”, Computer technology of printing, no. 33, 2015, pp. 18-27 (in Ukrainian).
  • [26] S. Omatu, B. M. Khalid, R. Yusof, Neuro-Control and its Applications. Advances in Industrial Control, Springer Verlag: New York, 1996.
  • [27] W. T. Miller, R. S. Sutton, P. J. Werrbos. Neural Networks for Control. MIT Press: Cambridge, MA, 1990.
  • [28] M. Norgaard, O. Ravn, N. Poulsen, L. Hansen. Neural Networks for Modelling and Control of Dynamic Systems. Springer: London, 2000.
  • [29] Y. Hirnyak, O. Ivakhiv, M. Nakonechnyi, T. Repetylo, “Control System of Robot Movement”, IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 12-14 September 2013, pp. 334-337, doi: 10.1109/IDAACS.2013.6662700.
  • [30] M. Nakonechnyi, O. Ivakhiv, T. Repetylo,”Car Speed Control with Different Types of Controllers”, XI International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), 2-6 September 2015, pp. 72-74.
  • [31] S. M. Shinners, Modern Control System Theory and Design. John Wiley and-Sons, Inc. New York /Chichester / Brisbane / Toronto / Singapore, 1992.
  • [32] B. C. Kuo, Automatic Control Systems. Prentice Hall, New Jersey, 1996.
  • [33] C. L. Phillips, R. D. Harbor, Feedback Control Systems. Prentice Hall, Upper Saddle River, New Jersey, 2000.
  • [34] G. C. Goodwin, S. F. Graebe, M. E. Salgado, Control System Design. Prentice Hall, Upper Saddle River, New Jersey, 2001.
  • [35] M. H. Popovich, O. V. Kovalchuk, The theory of automatic control. Textbook. Lybid, Kyiv, 2007 (in Ukrainian).
  • [36] K. Ogata, Modern Control Engineering, Pearson, 2010.
  • [37] J. Su, M. Nakonechnyi, O. Ivakhiv, A. Sachenko, “Developing the Automatic Control System Based on Neural Controller”, Information Technology and Control, vol. 44, no. 3, 2015, pp. 262-270, doi: 10.5755/j01.itc.44.3.7717.
  • [38] M. Nakonechnyi, O. Ivakhiv, Y. Nakonechnyi, Neural Network Control Systems for Nonlinear Objects: Monograph. Raster - 7. Publishing House: Lviv, 2017 (in Ukrainian).
  • [39] J. B. Dabney, T. L. Harman, Mastering Simulink 4. Prentice Hall, Upper Saddle River, New Jersey, 2001.
  • [40] H. Demuth, M. Beale, Neural Network Toolbox for use with MATLAB. The Math-Works, Inc., Natick, 1992.
  • [41] M. Nakonechnyi, O. Ivakhiv, R. Velgan, M. Geraimchuk, O. Viter, “Investigation of the control law influence on the dynamic characteristics of vehicle movement control system model”, 21st International Conference on Research and Education in Mechatronics (REM), 9-11 December 2020, pp. 100-107, doi: 10.1109/REM49740.2020.9313908.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6e96a9b-c28b-43a6-afa3-e81e1391a9ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.