PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Periodic trends in two-phase flow through a vertical minichannel: wavelet and multiscale entropy analyses based on digital camera data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By changing the air and water flow relative rates in the two-phase (air-water) flow through a minichannel, we observe aggregation and partitioning of air bubbles and slugs of different sizes. An air bubble arrangement, which show non-periodic and periodic patterns. The spatiotemporal behaviour was recorded by a digital camera. Multiscale entropy analysis is a method of measuring the time series complexity. The main aim of the paper was testing the possibility of implementation of multiscale entropy for two-phase flow patterns classification. For better understanding, the dynamics of the two-phase flow patterns inside the minichannel histograms and wavelet methods were also used. In particular, we found a clear distinction between bubbles and slugs formations in terms of multiscale entropy. On the other hand, the intermediate region was effected by appearance of both forms in non-periodic and periodic sequences. The preliminary results were confirmed by using histograms and wavelets.
Rocznik
Strony
51--56
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 , Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 , Bialystok, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Process Control, AGH University of Science and Technology, ul. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Anjos G.R., Borhani N., Mangiavacchi N., Thome J. R. (2014), A 3D moving mesh Finite Element Method for two-phase flows, Journal of Computational Physics, 270, 366–377.
  • 2. Ansari M.R., Azadi R. (2016), Effect of diameter and axial location on upward gas-liquid two-phase flow patterns in intermediate-scale vertical tubes, Annals of Nuclear Energy, 94, 530–540.
  • 3. Borowiec M., Rysak A., Betts D.H., Bowen C.R., Kim H.A., Litak G. (2014), Complex response of a bistable laminated plate: Multiscale entropy analysis, European Physical Journal Plus, 129, 211.
  • 4. Borowiec M., Sen A.K., Litak G., Hunicz J., Koszalka G., Niewczas A. (2010), Vibrations of a vehicle excited by real road profiles, Forschung im Ingenieurwesen, 74, 99–109.
  • 5. Chen L., Tian Y.S., Karayiannis T.G. (2006), The e_ect of tube diameter on vertical two-phase flow regimes in small tubes, International Journal of Heat and Mass Transfer, 49, 4220–4230.
  • 6. Costa M., Goldberger A.L., Peng C.-K. (2005), Multiscale entropy analysis of biological signal, Physical Review, E 71, 021906.
  • 7. Costa M., Peng C.-K., Goldberger A.L., Hausdorff J.M. (2003), Multiscale entropy analysis of human gait dynamics, Physica, A 330, 53–60.
  • 8. Fan C., Li H., Ren X. (2015), The order recurrence quantification analysis of the characteristics of two-phase flow pattern based on multi-scale decomposition, Transactions of the Institute of Measurement and Control, 37, 793–804.
  • 9. Fan C.-L., Jin N.-D., Chen X.-T., Gao Z.-K. (2013), Multi-scale permutation entropy, A complexity measure for discriminating twophase flow dynamics, Chinese Physics Letters, 30, 090501.
  • 10. Gorski G., Litak G., Mosdorf R., Rysak A. (2015b), Selfaggregation phenomenon and stable flow conditions in a two-phase flow through a minichanel, Zeitschrift fuer Naturforschung, A 70, 843–849.
  • 11. Gorski G., Litak G., Mosdorf R., Rysak A. (2016), Dynamics of a two-phase flow through a minichannel, Transition from churn to slug flow, European Physical Journal Plus, 131, 111.
  • 12. Gorski G., Litak G., Mosdorf R., Rysak A., (2015a), Two phase flow bifurcation due to turbulence, Transition from slugs to bubbles, European Physical Journal, B 88, 239.
  • 13. Gorski G., Litak G., Mosdorf R., Rysak R. (2015), Dynamics of two-phase flow through a minichannel, Fourier and multiscale entropy analyses, Applied Mechanics and Materials, 791, 217–223.
  • 14. Grassberger P. (1991), Information and complexity measures in dynamical systems, In: Atmanspacher H., Scheingraber H. (Eds.), Information Dynamics, New York, Plenum Press, 15–33.
  • 15. Haralick R.M., Srernberg S.R., Zhuang X. (1987), Image analysis using mathematical morphology, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9, 532–550.
  • 16. Jin N.D., Nie X.B., Ren Y.Y., Liu X.B. (2003), Characterization of oil/water two-phase flow patterns based on nonlinear time series analysis, Flow Measurement and Instrumentation 14, 169–175.
  • 17. Kumar P., Foufoula-Georgiou E. (1997), Wavelet analysis for geophysical applications, Reviews of Geophysics, 35, 385–412.
  • 18. Lian E.Y., Ren Y.Y., Han Y.F., Liu W.X,. Jin N.D., Zhao J.Y. (2016), Multi-Scale morphological analysis of conductance signals in vertical upward gas-liquid two-phase flow, Zeitschrift fuer Naturforschung, A 71, 1031–1052.
  • 19. Litak G., Syta A., Rusinek R. (2011), Dynamical changes during composite milling, recurrence and multiscale entropy analysis. International Journal of Advanced Manufacturing Technology, 56, 445–453.
  • 20. Lonkwic P., Łygas K., Wolszczak P., Molski S., Litak G. (2017), Braking deceleration variability of progressive safety gears using statistical and wavelet analyses, Measurement , 110, 90–97.
  • 21. Mosdorf R., Cheng P., Wu H.Y., Shoji M. (2005), Non-linear analyses of flow boiling in microchannels, International Journal of Heat and Mass Transfer, 48, 4667–4683.
  • 22. Mukin R.V. (2016), Bubble reconstruction method for wiremesh sensors measurements, Exp. Fluids, 57, 133.
  • 23. Mydlarz-Gabryk K., Pietrzak M., Troniewski L. (2014), Study on oil-water two-phase upflow in vertical pipe, Journal of Petroleum Science and Engineering, 117, 28–36.
  • 24. Otsu N. (1979), A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, SMC9, 62–66.
  • 25. Riano A.B., Rodriguez I.H., Bannwart A.C., Rodriguez O.M.H. (2015), Film thickness measurement in oil-water pipe flow using image processing technique, Experimental Thermal and Fluid Science, 68, 330–338.
  • 26. Richman JS, Moorman JR (2000), Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology, Heart and Circulatory Physiology, 278, H2039–H2049.
  • 27. Rysak A., Litak G., Mosdorf R., Gorski G. (2016), Investigation of two-phase flow patterns by analysis of Eulerian space-time correlations, International Journal of Multi-phase Flow, 85, 23–37.
  • 28. Sen A.K., Litak G., Taccani R., Radu R., (2008), Wavelet analysis of cycle-to-cycle pressure variations in an internal combustion engine Chaos, Solitons & Fractals, 38, 886–893.
  • 29. Torrence C., Compo G.P. (1998), A practical guide to wavelet analysis, Bull. Amer. Meteor. Soc., 79, 61–78.
  • 30. Wang S.F., Mosdorf R., Shoji M. (2003), Nonlinear analysis on uctuation feature of two-phase flow through a T-junction, International Journal of Heat and Mass Transfer, 46, 1519–1528.
  • 31. Wongwises S., Pipathattakul M. (2006), Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel, Experimental Thermal and Fluid Science 30, 345–354.
  • 32. Wu S.-D., Wu C.-W., Lin S.-G., Wang C.-C., Lee K.-Y. (2013), Time series analysis using composite multiscale entropy, Entropy, 15, 1069–1084.
  • 33. Zhao L., Rezkallah K.S. (1993), Gasliquid flow patterns at microgravity conditions, International Journal Multiphase Flow, 19, 751– 763.
  • 34. Zong Y.-B., Jin N.D., Wang Z.-Y., Gao Z.-K., Wang C. (2010), Nonlinear dynamic analysis of large diameter inclined oil-water two phase flow pattern, International Journal of Multiphase Flow, 36, 166–183.
Uwagi
Acknowledgments: The presented research was funded by the National Science Centre, Poland – the number of decision UMO.2017/27/ B/ST8/02905.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6e83257-2fc0-44dc-85c6-4388b69cc2b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.