Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study investigated the preparation of a high-performance supercapacitor based on potassium ion-doped laser-induced graphene in a LiCl gel electrolyte. Detailed analysis of the obtained materials was carried out by using Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive spectroscopy. In addition, more fabrication steps for electrochemical electrodes with and without doping were executed and further tested by using an areal electrode configuration. In this respect, the areal capacitance of the potassium-doped laser-induced graphene capacitor increased by 90%, which was enhanced from 11 mF cm−2 at 0.75 mA cm−2 to 21 mF cm−2 at the same current density. This great enhancement indicates a low-cost and high-performance supercapacitor for wearable or flexible electronics applications. Besides that, cycling stability over 2,000 cycles has been investigated for these electrodes, which showed good stability throughout the electrochemical investigation of the LiCl gel electrolyte. The areal energy stored by the capacitor with doped graphene was higher than that reported for the pristine one.
Wydawca
Czasopismo
Rocznik
Tom
Strony
67--79
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia
autor
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia
autor
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia
autor
- Department of Physics, School of Advanced Engineering, UPES, Dehradun, 248007, India
autor
- Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia (Central University), New Delhi, 110025, India
Bibliografia
- [1] Yan, Z., Luo, S., Li, Q., Wu, Z., Recent advances in flexible wearable supercapacitors: properties, Fabrication, Appl., 2024, 11: 2302172. doi: 10.1002/advs.202302172
- [2] Chen, Z., He, G., You, T., Zhang, T., Liu, B., Wang, Y., Journal of Environmental Chemical Engineering Complex pollution of Fluoroquinolone antibiotics and metal oxides/metal ions in water: a review on occurrence, formation mechanisms, removal and ecotoxicity, J. Environ. Chem. Eng., 2024, 12: 112191.doi: 10.1016/j.jece.2024.112191
- [3] Khan, H.A., Tawalbeh, M., Aljawrneh, B., Abuwatfa, W., Al-Othman, A., Sadeghifar, H., et al., A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges, Energy, 2024, 295: 131043. doi:10.1016/j.energy.2024.131043
- [4] Yuan, Y., Han, C., Guo, L., Wu, X., Zhao, Y., Exploring the mechanisms of magnetic fields in supercapacitors: material classification, material nanostructures, and electrochemical properties, J. Mater. Chem. A, 2024, 12: 6165–6189. doi: 10.1039/D3TA07658J
- [5] Abraham, D.S., Bhagiyalakshmi, M., Vinoba, M., Chapter 3 - Supercapacitors: basics and progress, In: Kulkarni N.V., B. I. B. T. H. of E.M. for S.E. Kharissov, (Eds.). Elsevier, 2024, pp. 61–82. doi: 10.1016/B978-0-323-96125-7.00021-6
- [6] Chen, Z., Zhao, S., Zhao, H., Zou, Y., Yu, C., Zhong, W., Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications, Chem. Eng. J., 2021, 409: 127891. doi:10.1016/j.cej.2020.127891
- [7] Pham, H.D., Mahale, K., Hoang, T.M.L., Mundree, S.G.,
- Gomez-Romero, P., Dubal, D.P., Dual carbon potassiumion capacitors: biomass-derived graphene-like carbon nanosheet cathodes, ACS Appl. Mater. Interfaces, 2020, 12: 48518–48525. doi:10.1021/acsami.0c12379
- [8] Khandelwal, M., Van Tran, C., Lee, J., In, J.B., Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications, Chem. Eng. J., 2022, 428: 131119. doi:10.1016/j.cej.2021.131119
- [9] Shaalan, N.M., Ahmed, F., Kumar, S., Ahmad, M.M., Al-Naim, A.F., Hamad, D., Electrochemical performance of potassium bromate active electrolyte for laser-induced KBr-graphene supercapacitor electrodes, Inorganics, 2023, 11: 109. doi:10.3390/inorganics11030109
- [10] Karaman, C., Bayram, E., Karaman, O., Aktaş, Z., Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors, J. Electroanal. Chem., 2020, 868: 114197. doi:10.1016/j.jelechem.2020.114197
- [11] Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: a review of graphene, Chem. Rev., 2010, 110: 132–145. doi:10.1021/cr900070d
- [12] Ghuge, A.D., Shirode, A.R., Kadam, V.J., Graphene: A comprehensive review, Curr. Drug. Targets, 2017, 18: 724 733. doi:10.2174/1389450117666160709023425
- [13] Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E.L.G., et al., Laser-induced porous graphene films fromcommercial polymers, Nat. Commun., 2014, 5: 5–12. doi:10.1038/ncomms6714
- [14] Ngidi, N.P.D., Ollengo, M.A., Nyamori, V.O., Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide, Materials (Basel), 2019, 12: 3376. doi:10.3390/ma12203376
- [15] Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R., Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett., 2010; 10: 751–758. doi:10.1021/nl904286r
- [16] Popov, V.N., Two-phonon Raman scattering in graphene, AIP Conf. Proc., Vol. 2075, 2019, p. 110001.doi:10.1063/1.5091252
- [17] Popov, V.N., Two-phonon Raman bands of bilayer graphene: Revisited, Carbon N. Y., 2015, 91: 436–444. doi:10.1016/j.carbon.2015.05.020
- [18] Shaalan, N.M., Ahmed, F., Kumar, S., Melaibari, A., Hasan, P.M.Z., Aljaafari, A., Monitoring food spoilage based on a defect-induced multiwall carbon nanotube sensor at room temperature: preventing food waste, ACS Omega, 2020, 5: 30531–30537. doi: 10.1021/acsomega.0c04396
- [19] Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., Jorio, A., Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon N. Y., 2010, 48: 1592–1597. doi:10.1016/j.carbon.2009.12.057
- [20] Il Langford, J., Wilson, A.J.C., Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, 11: 102–113.
- [21] Patterson, A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, 56: 978–982. doi:10.1103/PhysRev.56.978
- [22] Iqbal, M.W., Razzaq, S., Noor, N.A., Aftab, S., Afzal, A., Ullah, H., et al., Enhancing the electronic properties of the graphene-based field-effect transistor via chemical doping of KBr, J. Mater. Sci. Mater. Electron., 2022, 33: 12416–12425. doi: 10.1007/s10854-022-08199-5
- [23] Shaalan, N.M., Ahmed, F., Rashad, M., Kumar, S., Saber, O., Al-Naim, A.F., et al., Ceramic Ti/TiO2/ AuNP Film with 1-D nanostructures for selfstanding supercapacitor electrodes, Crystals, 2022, 12: 791. doi:10.3390/cryst12060791
- [24] Lee, S., Kim, K., Yoon, J., Binder- and conductive additive-free laser-induced supercapacitors, NPG Asia Mater., 2020, 12: 1–15. doi:10.1038/s41427-020-0204-0
- [25] Clerici, F., Fontana, M., Bianco, S., Serrapede, M., Perrucci, F., Ferrero, S., et al., In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes, ACS Appl. Mater. Interfaces, 2016, 8: 2–8. doi:10.1021/acsami.6b00808
- [26] Seol, M., Nam, I., Ribeiro, E.L., Segel, B., Lee, D., Palma, T., et al., All-printed in-plane supercapacitors by sequential additive manufacturing process, ACS Appl. Energy Mater., 2020, 3: 4965–4973. doi:10.1021/acsaem.0c00510
- [27] Enoki, T., Endo, M., Suzuki, M., Graphite intercalation compounds and applications, Oxford Academic, New York, 2003. doi: 10.1093/oso/9780195128277.001.0001
- [28] Xue, M., Chen, G., Yang, H., Zhu, Y., Wang, D., He, J., et al., Superconductivity in potassium-doped fewlayer graphene, J. Am. Chem. Soc., 2012, 134:
- 6536–6539. doi: 10.1021/ja3003217
- [29] Zhai, Y.T., Chen, S., Yang, J.H., Xiang, H.J., Gong, X.G., Walsh, A., et al., Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation, Phys. Rev. B, 2011, 84: 75213.
- [30] Liu, Y., Xu, Z., Zhan, J., Li, P., Gao, C., Superb electrically conductive graphene fibers via doping strategy, Adv. Mater., 2016, 28: 7941. doi: 10.1002/adma.201602444
- [31] Khan, M.F., Iqbal, M.Z., Iqbal, M.W., Iermolenko, V.M., Waseem Khalil, H.M., Nam, J., et al., Stable and reversible doping of graphene by using KNO3 solution and photo-desorption current response. RSC Adv., 2015, 5: 50040–50046. doi: 10.1039/C5RA08136J
- [32] Bin, J., Hsia, B., Yoo, J., Hyun, S., Carraro, C., Maboudian, R., et al., Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide, Carbon N. Y., 2014, 83: 144–151. doi: 10.1016/j.carbon.2014.11.017
- [33] Liu, C., Liang, H., Wu, D., Lu, X., Wang, Q., Graphenebased supercapacitors: direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor (Adv. Electron. Mater. 7/2018), Adv. Electron. Mater., 2018, 4: 1870034. doi: 10.1002/aelm.201870034
- [34] Zhou, C., Hong, M., Yang, Y., Yang, C., Hu, N., Zhang, L., et al., Laser-induced bi-metal sulfide/graphene nanoribbon hybrid frameworks for high-performance all-in-one fiber supercapacitors, J. Power Sources, 2019, 438: 227044. doi: 10.1016/j.jpowsour.2019.227044
- [35] Khandelwal, M., Nguyen, A.P., Van Tran, C., In, J.B., Simple fabrication of Co3O4 nanoparticles on Ndoped laser-induced graphene for high-performance supercapacitors, RSC Adv., 2021, 11: 38547–38554. doi:10.1039/D1RA08048B
- [36] Tiliakos, A., Tre, A.M.I., Tanas, E., Balan, A., Stamatin, I., Space-filling supercapacitor carpets: highly scalable fractal architecture for energy storage, J. Power Sources, 2018, 384: 145–155. doi: 10.1016/j.jpowsour.2018.02.061
- [37] Liu, Z., Hinaut, A., Peeters, S., Scherb, S., Meyer, E., Righi, M.C., et al., 2D KBr/graphene heterostructures –influenceon work function and friction, Nanomaterials, 2022, 12: 1–10. doi: 10.3390/nano12060968
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6e7200a-2104-4532-b3d0-4711201cc953
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.