PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A residual perfectly matched layer for wave propagation in elastic media

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Absorbing boundary conditions are often utilized to eliminate spurious reflections that arise at the model’s truncation boundaries. The perfectly matched layer (PML) is widely considered to be very efficient artificial boundary condition. A new alternative implementation of the PML is presented. We call this method residual perfectly matched layer (RPML) because it is based on residual calculation between the original equations and the PML formulations. This new approach has the same form as the original governing equations, and the auxiliary differential equation has only one partial derivative with respect to time, which is the simplest compared to other PMLs. Therefore, the RPML shows great advantages of implementation simplicity and computational efficiency over the standard complex stretched coordinate PML. At the same time, the absorption performance is improved by adopting the complex frequency shifted stretching function; the stability of the boundary is enhanced by applying the double damping profile.
Czasopismo
Rocznik
Strony
1561--1573
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510530, China
autor
  • Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510530, China
autor
  • Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510530, China
autor
  • Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510530, China
autor
  • Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510530, China
  • Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510530, China
Bibliografia
  • 1. Assi H, Cobbold R (2016) A perfectly matched layer formulation for modeling transient wave propagation in an unbounded fluid-solid medium. J Acoust Soc Am 139(4):1528-1536
  • 2. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetics waves. J Comput Phys 114:185-200
  • 3. Berenger JP (2004) On the reflection from Cummer’s nearly perfectly matched layer. A perfectly matched layer for the absorption of electromagnetic waves. IEEE Microw Wirel Compon Lett 14:334-336
  • 4. Cerjan C, Kosloff D, Kosloff R et al (1985) A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50:705-708
  • 5. Chen JY (2012) Nearly perfectly matched layer method for seismic wave propagation in poroelastic media. Can J Explor Geophys 37:22-27
  • 6. Chen JY (2011) Application of the nearly perfectly matched layer for seismic wave propagation in 2D homogeneous isotropic media. Geophys Prospect 59:662-672
  • 7. Chew WC, Weedon WH (1994) A 3D perfectly matched medium from modified maxwell’s equations with stretched coordinates. Microw Opt Technol Lett 7:599-604
  • 8. Chew WC, Liu QH (1996) Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J Comput Acoust 4:341-359
  • 9. Clayton R, Engquist B (1977) Absorbing boundary conditions for acoustic and elastic wave equations. Bull Seismol Soc Am 67:1529-1540
  • 10. Collino F, Monk PB (1998) Optimizing the perfectly matched layer. Comput Methods Appl Mech Eng 164:157-171
  • 11. Collino F, Tsogka C (2001) Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66:294-307
  • 12. Cui F, Chen Y, Zhang Y et al (2021) Research on application of ground penetrating radar array method based on plane beam signal in different geological models. Acta Geophys 69:2241-2260
  • 13. Cummer SA (2003) A simple nearly perfectly matched layer for general electromagnetic media. IEEE Microw Wirel Compon Lett 13:128-130
  • 14. Drossaert FH, Giannopoulos A (2007) A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves. Geophysics 72:9-17
  • 15. Engquist B, Majda A (1977) Absorbing boundary conditions for the numerical simulation of waves. Math Comput 31:629-651
  • 16. Festa G, Delavaud E, Vilotte JP (2005) Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations. Geophys Res Lett 32:L20306
  • 17. Gedney SD (1996) An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media. Electromagnetics 16:399-415
  • 18. Gedney SD, Zhao B (2010) An auxiliary differential equation formulation for the complex frequency shifted PML. IEEE Trans Antennas Propag 58(3):838-847
  • 19. Giannopoulos A (2011) Recursive integration CFS-PML for GPR FDTD modelling [C]. International Workshop on Advanced Ground Penetrating Radar. IEEE
  • 20. Groby J, Tsogka C (2006) A time domain method for modeling viscoacoustic wave propagation. J Comput Acoust 14:201-236
  • 21. Hastings F, Schneider J, Broschat S (1996) Application of the perfectly matched layer PML absorbing boundary condition to elastic wave propagation. J Acoust Soc Am 100:3061-3069
  • 22. Higdon RL (1991) Absorbing boundary conditions for elastic waves. Geophysics 56:231-241
  • 23. Hu WY, Abubakar A, Habashy TM (2007) Application of the nearly perfectly matched layer in acoustic wave modeling. Geophysics 72:169-175
  • 24. Hu W, Cummer SA (2006) 2006, An FDTD model for low and high altitude lightning-generated EM fields. IEEE Trans Antennas Propag 54(5):1513-1522
  • 25. Komatitsch D, Martin R (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72:155-167
  • 26. Komatitsch D, Tromp J (2003) A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys J Int 154:146-153
  • 27. Kuzuoglu M, Mittra R (1996) Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microw Guided Wave Lett 6:447-449
  • 28. Liu X, Greenhalgh S (2019) Frequency-domain FD modeling with an adaptable NPML boundary condition for poro-viscoelastic waves upscaled from effective biot theory. Geophysics 84(4):59-70
  • 29. Luo YQ, Liu C (2018) Absorption effects in nearly perfectly matched layers and damping factor improvement. OGP 53(5):903-913
  • 30. Luo YQ, Liu C (2019) Multi-axial complex-frequency shifting nearly perfectly matched layer for seismic forward modeling in elastic media. OGP 54(5):1024-1033
  • 31. Luo YQ, Liu C (2020) On the stability and absorption effect of the multiaxial complex frequency shifted nearly perfectly matched layers method for seismic wave propagation. Chin J Geophys 63(8):3078-3090
  • 32. Luo YQ, Liu C (2022) Modeling seismic wave propagation in TTI media using multiaxial complex frequency shifted nearly perfectly matched layer method. Acta Geophys 70:89-109
  • 33. Ma X, Li Y, Song J (2019) A stable auxiliary differential equation perfectly matched layer condition combined with low-dispersive symplectic methods for solving second-order elastic wave equations. Geophysics 84(3):167-179
  • 34. Martin R, Komatitsch D, Ezziani A (2008) An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media. Geophysics 73(4):T51-T61
  • 35. Martin R, Komatitsch D, Gedney SD et al (2010) A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using auxiliary differential equations (ADE-PML). Comput Modeling Eng Sci 56(1):17-41
  • 36. Mezafajardo KC, Papageorgiou AS (2008) A nonconvolutional, splitfield, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bull Seismol Soc Am 98:1811-1836
  • 37. Sacks Z, Kingsland D, Lee R et al (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43:1460-1463
  • 38. Sochacki J, Kubichek R, George J (1987) Absorbing boundary conditions and surface waves. Geophysics 52:60-71
  • 39. Zhuang M, Zhan Q, Zhou J et al (2020) A simple implementation of PML for second-order elastic wave equations. Comput Phys Commun 246:106867
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6e5af43-66c2-48df-8e38-f6c48af54ae8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.