PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monthly changes in physicochemical parameters of the groundwater in Nida valley, Poland (case study)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The groundwater of the Nida valley was investigated to assess the quality of water source and monthly variations of the physicochemical parameters. A total of 70 water samples were collected from 7 sampling sites during a 10 months period from June 2021 to March 2022. Sampling frequency was once per month. The parameters such as temperature (T), electrical conductivity (EC), dissolved oxygen (DO), pH, total dissolved solids (TDS) were measured in-situ by using handheld device. Meanwhile, total nitrogen (TN), total phosphorus (TP), chloride (Cl – ), sulphate (SO42– ), manganese (Mn), iron (Fe), zinc (Zn), cadmium (Cd), lead (Pb), copper (Cu), chemical oxygen demand (COD) were analysed in the laboratory. According to the classification of Ministry of Marine Economy and Inland Navigation in Poland (2019), some investigated parameters are classified as unsatisfactory quality waters (class 4) and poor-quality waters (class 5) for a few specific months. Such as, TP concentrations obtained in June and January are classified as class 4, SO42– concentrations corresponded to classes 4 and 5 in June, July and August, and Mn concentrations (except in January) are settled in class 5. The high values of Fe in November are arranged in class 5 and in June, July to September and March are classified in class 4. Statistical methods were used as: Shapiro-Wilk test (α = 0.05), ANOVA test and post-hoc Tukey test (α = 0.05), Kruskal-Wallis test and Wilcoxon (Mann-Whitney) rank sum test (α = 0.05) estimated the significant differences in sampling months. Pearson correlation analysis (α = 0.01 and 0.05), principal component analysis (PCA) and cluster analysis showed correlation between the parameters and sampling months.
Wydawca
Rocznik
Tom
Strony
220--234
Opis fizyczny
Bibliogr. 65 poz., mapa, tab., wykr.
Twórcy
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
  • Vinh University, Institute of Chemistry, Biology and Environment, 182 Le Duan St, Vinh City, Nghe An Province, Vietnam
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
Bibliografia
  • AL-HADITHI M. 2012. Application of water quality index to assess suitability of groundwater quality for drinking purposes in Ratmao – Pathri Rao watershed, Haridwar District, India. American Journal of Scientific and Industrial Research. Vol. 3(6) p. 395–402. DOI 10.5251/ajsir.2012.3.6.395.402.
  • ALLAN J.D. 1995. Stream ecology. Structure and function of running waters. 2nd ed. London. Chapman and Hall. ISBN 0412355302 pp. 436.
  • AMADI A.N., OLASEHINDE P.I., YISA J. 2010. Characterization of groundwater chemistry in the coastal plain-sand aquifer of Owerri using factor analysis. International Journal of the Physical Sciences. Vol. 5(8) p. 1306–1314.
  • APHA 1998. Standard methods for the examination of water and wastewater. 20 th ed. Washington, DC. American Public Health Association. ISBN 0875532357 pp. 1325.
  • AREMU M.O., OLAOFE O., IKOKOH P.P., YAKUBU M.M. 2011. Physico-chemical characteristics of stream, well and borehole water sources in Eggon, Nasarawa State, Nigeria. Journal of Chemical Society of Nigeria. Vol. 36(1) p. 131–136.
  • ASAMOAH A.A., AMORIN B.S. 2011. Assessment of the quality of bottled/sachet water in the Tarkwa-Nsuaem municipality (TM) of Ghana. Research Journal of Applied Sciences, Engineering and Technology. Vol. 3(5) p. 105–113.
  • BEHAILU T.W., BADESSA T.S., TEWODROS B.A. 2017. Analysis of physical and chemical parameters in ground water used for drinking around Konso Area, Southwestern Ethiopia. Journal of Analytical and Bioanalytical Techniques. Vol. 8(5), 379. DOI 10.4172/2155-9872. 1000379.
  • BENDIDA A., KENDOUCI M.A., TIDJANI A.E.-B. 2021. Characterization of Algerian Sahara groundwater for irrigation and water supply: Adrar region study case. Journal of Water and Land Development. No. 49 p. 235–243. DOI 10.24425/jwld.2021.137117.
  • BENRABAH S., ATTOUI B., HANNOUCHE M. 2016. Characterization of groundwater quality destined for drinking water supply of Khenchela City (eastern Algeria). Journal of Water and Land Development. No. 30 p. 13–20. DOI 10.1515/jwld-2016-0016.
  • BEYAITAN BANTIN A., WANG H., JUN X. 2020. Analysis and control of the physicochemical quality of groundwater in the Chari Baguirmi Region in Chad. Water. Vol. 12(10), 2826. DOI 10.3390/w12102826.
  • BOB M., ABD RAHMAN N., TAHER S., ELAMIN A. 2015. Multi-objective assessment of groundwater quality in Madinah City, Saudi Arabia. Water Quality, Exposure and Health. Vol. 7 p. 53–66. DOI 10.1007/s12403-014-0112-z.
  • BOYD C.E. 1999. Water quality: An introduction. Dordrecht. Kluwer Academic Publishers Group. ISBN 0-7923-7853-9 pp. 330.
  • BROADLY M.R., WHITE P.J., HAMMOND H.P., ZELKO I., LUX A. 2007. Zinc in plant. New Phytologist. Vol. 173(4) p. 677–702. DOI 10.1111/j.1469-8137.2007.01996.x.
  • CHAPMAN D.V. (ed.) 1996. Water quality assessments: A guide to the use of biota, sediments and water in environment monitoring. 2nd ed. London. E & FN Spon. ISBN 0419216006 pp. 626.
  • CLILVERD H.M., WHITE D.M., TIDWELL A.C., RAWLINS M.A. 2011. The sensitivity of northern groundwater recharge to climate change: A case study in Northwest Alaska. Journal of the American Water Resources Association. Vol. 47 p. 1228–1240. DOI 10.1111/j.1752-1688.2011.00569.x.
  • COSTELLO M.J., MCCARTHY T.K., O’FARRELL M.M. 1984. The stoneflies (Plecoptera) of the Corrib catchment area, Ireland. Annales de Limnologie. Vol. 20(1–2) p. 25–34. DOI 10.1051/limn/1984014.
  • DE ZUANE J. 1996. Handbook of drinking water quality. 2nd ed. Hoboken. John Wiley and Sons. ISBN 9780470172971 pp. 575. DOI 10.1002/9780470172971.
  • DESHPANDE S.M., AHER K.R. 2012. Evaluation of groundwater quality and its suitability for drinking and agriculture use in parts of Vaijapur, District Aurangabad, MS, India. Research Journal of Chemical Sciences. Vol. 2(1) p. 25–31.
  • DOHARE D., DESHPANDE S., KOTIYA A. 2014. Analysis of groundwater quality parameters: A review. Research Journal of Engineering Sciences. Vol. 3(5) p. 26–31.
  • DONG G.J., DAEWOONG J., SEONG H.K. 2019. Characterization of total-phosphorus (TP) pretreatment microfluidic chip based on a thermally enhanced photocatalyst for portable analysis of eutrophication. Sensors. Vol. 19(16), 3452. DOI 10.3390/s19163452.
  • EL MAGHRABY M.M.S., EL NASR A.KH.O.A., HAMOUDA M.S.A. 2013. Quality assessment of groundwater at south Al Madinah Al Munawarah area, Saudi Arabia. Environmental Earth Sciences. Vol. 70(4) p. 1525–1538. DOI 10.1007/s12665-013-2239-9.
  • EL QRYEFY M., OUARDI J., NAJY M., BELGHYTI D., EL KHARRIM K. 2021. Hydrochemical characteristics and water quality assessment of Lake Dayet Erroumi – Khemisset, Morocco. Journal of Water and Land Development. No. 49 p. 179–187. DOI 10.24425/jwld.2021.137110.
  • EPA 1983. Methods for chemical analysis of water and wastes. Washington, DC. United States Environmental Protection Agency pp. 491.
  • FETTER C.W., BOVING T., KREAMER D. 1993. Contaminant hydrogeology. Upper Saddle River. Prentice-Hall, Inc. ISBN 1478632798 pp. 647.
  • GIESE M., HAAF E., HEUDORFER B., BARTHEL R. 2020. Comparative hydrogeology – reference analysis of groundwater dynamics from neighbouring observation wells. Hydrological Sciences Journal. Vol. 65 p. 1685–1706. DOI 10.1080/02626667.2020.1762888.
  • GORDE S.P., JADHAV M.V. 2013. Assessment of water quality parameters: A review. Journal of Engineering Research and Applications. Vol. 3(6) p. 2029–2035.
  • GREENWOOD N.N., EARNSHAW A. 1984. Chemistry of the elements. Oxford. Pergamon Press. ISBN 0-08-022057-6 pp. 1542.
  • HYNES H.B.N. 1960. The biology of polluted waters. Liverpool. Liverpool University Press pp. 202. DOI 10.1002/iroh.19610460321.
  • IMAM T.S. 2012. Assessment of heavy metal concentrations in the surface water of Bompai-Jakara Drainage Basin, Kano State, Northern Nigeria. Bayero Journal of Pure and Applied Science. Vol. 5(1) p.103–108. DOI 10.4314/bajopas.v5i1.19.
  • JANTZEN P.G. 1978. Investigating factors that affect dissolved oxygen concentration in water. The American Biology Teacher. Vol. 40 (6) p. 346–352. DOI 10.2307/4446266.
  • JASECHKO S., WASSENAAR L.I., MAYER B. 2017. Isotopic evidence for widespread cold season biased groundwater recharge and young streamflow across central Canada. Hydrological Processes. Vol. 31 (12) p. 2196–2209. DOI 10.1002/hyp.11175.
  • JYRKAMA M.I., SYKES J.F. 2007. The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). Journal of Hydrology. Vol. 338 p. 237–250. DOI 10.1016/j.jhydrol.2007.02.036.
  • JYVÄSJÄRVI J., MARTTILA H., ROSSI P.M., ALA-AHO P., OLOFSSON B., NISELL J., ..., MUOTKA T. 2015. Global change biology – Climate induced warming imposes a threat to north European spring ecosystems. Global Change Biology. Vol. 21(12). DOI 10.1111/gcb.13067.
  • KIRKINEN J., MARTIKAINEN A., HOLTTINEN H., SAVOLAINEN I., AUVINEN O., SYRI S. 2005. Impacts on the energy sector and adaptation of the electricity network business under a changing climate in Finland. FINADAPT Working Paper 10. Finnish Environment Institute Mimeographs. No. 340. Helsinki. ISBN 952-11-2117-3 pp. 36.
  • KLØVE B., HANNE M.L.K., TARJA P., GUNNARSDOTTIR M.J.,GAUT S., GARDARSSON S.M., ROSSI P.M., MIETTINEN I. 2014. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland. Hydrogeology Journal. Vol. 25 p. 1033–1044. DOI 10.1007/s10040-017-1552-x.
  • KOWALIK T., KANOWNIK W., BOGDAŁ A., POLICHT-LATAWIEC A. 2014. Wpływ zmian użytkowania zlewni wyżynnej na kształtowanie jakości wody powierzchniowej [Effect of change of small upland catchment use on surface water quality course]. Rocznik Ochrona Środowiska. T. 16(1) p. 223–238.
  • KOVALEVSKII V.S. 2007. Effect of climate changes on groundwater. Water Resource. No. 34 p. 140–152. DOI 10.1134/S0097807807020042.
  • KRAPAC I.G., DEY W.S., ROY W.R., SMYTH C.A., STORMENT E., SARGENT S.L., STEELE J.D. 2002. Impacts of swine manure pits on groundwater quality. Environmental Pollution. Vol. 120 p. 475–492. DOI 10.1016/s0269-7491(02)00115-x.
  • ŁAJCZAK A. 2004. Negative consequences of regulation of a meandering sandy river and proposals tending to diminish flood hazard. Case study of the Nida River, southern Poland. Proceedings of the Ninth International Symposium on River Sedimentation. Yichang, China. Beijing. IAHR p. 1773–1783.
  • MEIXNER T., MANNING A.H., STONESTROM D.A., ALLEN D.M., AJAMI H., BLASCH K.W., ..., WALVOORD M.A. 2016. Implications of projected climate change for groundwater recharge in the western United States. Journal of Hydrology. Vol. 534 p. 124–138. DOI 10.1016/j.jhydrol.2015.12.027.
  • MINNS C.K. 1989. Factors affecting fish species richness in Ontario Lakes. Transactions of American Fisheries Society. Vol. 118 p. 533–454. DOI 10.1577/1548-8659(1989)118<0533:FAFS-RI>2.3.CO;2.
  • POPOOLA L.T., YUSUF A.S., ADERIBIGBE T.A. 2019. Assessment of natural groundwater physico-chemical properties in major industrial and residential locations of Lagos Metropolis. Applied Water Science. Vol. 9, 191. DOI 10.1007/s13201-019-1073-y.
  • PRAPARNA N., SHASHIKANT K. 2002. Pollution level in Hussain Sagar Lake of Hyderabad – A case study. Pollution Research. Vol. 21(2) p. 187–190.
  • RINDERER M., VAN MEERVELD H.J., MCGLYNN B.L. 2019. From points to patterns: Using groundwater time series clustering to investigate subsurface hydrological connectivity and runoff source area dynamics. Water Resources Research. Vol. 55 p. 5784–5806. DOI 10.1029/2018WR023886.
  • Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie kryteriów i sposobu oceny stanu jednolitych części wód podziemnych [Ordinance of Ministry of Marine Economy and Inland Navigation from 11st October 2019 on the criteria and method of assessing the status of groundwater bodies]. Dz.U. 2019 poz. 2148.
  • SEILER H.G., SIGEL H., SIGEL A. 1988. Handbook on the toxicity of inorganic compounds. New York. Marcel Dekker Inc. ISBN 08-247-77271 pp. 1069.
  • SIEBERT S., BURKE J., FAURES J.M., FRENKEN K., HOOGEVEEN J., DOLL P., PORTMANN F.T. 2010. Groundwater use for irrigation – a global inventory. Hydrology and Earth System Sciences. Vol. 14 p. 1863–1880. DOI 10.5194/hess-14-1863-2010.
  • SOCEANU A., DOBRINAS S., DUMITRESCU C.I., MANEA N., SIRBU A., POPESCU V., VIZITIU G. 2021. Physico-chemical parameters and health risk analysis of groundwater quality. Applied Sciences. Vol. 11, 4775. DOI 10.3390/app11114775.
  • SOJKA M., MURAT-BŁAŻEJEWSKA S., KANCLERZ J. 2010. Trendy zmian jakości wody rzecznej w małej zlewni nizinnej [Tendencies in changes of the river water quality in a small lowland catchment]. Zeszyty Problemowe Postępów Nauk Rolniczych. Z. 548(2) p. 435–444.
  • SOMIA L., SLIMANE K., VINCENT V., LAURENT B., BELGACEM H., SUZANNE Y., MERYEM J., NAOUEL D. 2022. Hydrochemical characterisation of groundwater using multifactorial approach in Foum el Gueiss basin, Northeastern Algeria. Journal of Water and Land Development. No. 52 p. 60–65. DOI 10.24425/jwld.2021.139944.
  • STRUŻYŃSKI A., KSIĄŻEK L., BARTNIK V., RADECKI-PAWLIK A., PLESIŃSKI K., FLOREK J., ..., STRUTYŃSKI M. 2015. Wetlands in river valleys as an effect of fluvial processes and anthropopression. In: Wetlands and Water Framework Directive. GeoPlanet: Earth and Planetary Sciences. Eds. S. Ignar, M. Grygoruk. Cham. Springer. DOI 10.1007/978-3-319-13764-3_5.
  • SUBHAN M., ASGHAR M., MUHAMMAD K. 2008. Physico-chemical study of surface and ground water of Taluka Nawabshah, District Nawabshah, Sindh, Pakistan. Journal – Chemical Society Pakistan. Vol. 30(6) p. 950–953.
  • SUMANT K.N.C., GHOSH R.P., SINGH M.M., SONKUSARE S.S., SANJAY M. 2015. Assessment of water quality of lakes for drinking and irrigation purposes in Raipur City, Chhattisgarh, India. Journal of Engineering Research and Applications. Vol. 5(2) p. 42–49.
  • TAYLOR R.G., SCANLON B., DÖLL P., RODELL M., VAN BEEK R., WADA Y., ..., TREIDEL H. 2013. Ground water and climate change. Nature Climate Change. Vol. 3 p. 322–329. DOI 10.1038/nclimate1744.
  • TIWARI A.K., SINGH A.K., SINGH A.K., SINGH M.P. 2015. Hydrogeo-chemical analysis and evaluation of surface water quality of Pratapgarh District, Uttar Pradesh, India. Applied Water Science. Vol. 7 p. 1609–1623. DOI 10.1007/s13201-015-0313-z.
  • UHL V.W., BARON J.A., DAVIS W.W., WARNER D.B., SEREMET C.C. 2009. Groundwater development: Basic concepts for expanding CRS water programs. Technical paper [online]. Baltimore. Catholic Relief Services – United States Conference of Catholic Bishops pp. 73. [Access 10.06.2022]. Available at: https://www.crs.org/sites/default/files/tools-research/groundwater-development-basic-concepts-for-expanding-crs-water-programs.pdf
  • VIDHYA M.H, PALANIVEL M., DHANAKUMAR S., KALAISELVI K. 2018. Temporal variation of physico-chemical characteristics of Grodnu water in Kasargod district, Kerala, India. Research Journal of Life Sciences, Bionformatics, Pharmaceutical and Chemical Sciences. Vol. 4(2) p. 252–267. DOI 10.26479/2018.0402.19.
  • VOUDOURIS K., MANDRALI P., KAZAKIS N. 2018. Preventing groundwater pollution using vulnerability and risk mapping: The case of the Florina Basin, NW Greece. Geosciences. Vol. 8(4), 129. DOI 10.3390/geosciences8040129.
  • WANG G., SU M.Y., CHEN Y.H., LIN F.F., LUO D., GAO S.F. 2006. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution. Vol. 144 p. 127–135. DOI 10.1016/j.envpol.2005.12.023.
  • WHO 2004. Guidelines for drinking water quality. Third editio incorporating the first and second addenda. Vol. 1. Recommendations [online]. Geneva, Switzerland. World Health Organization. ISBN 9789241547611 pp. 515. [Access 10.06.2022]. Available at: https://www.who.int/publications/i/item/9789241547611
  • WHO 2017. Guidelines for drinking-water quality [online]. 4 th ed. ISBN 9789241548151 pp. 541. [Access 10.06.2022]. Available at: https://apublica.org/wp-content/uploads/2014/03/Guidelines-OMS-2011.pdf
  • XIN T.J., SHAARI H., GHAZALI A., IBRAHIM N.B. 2020. Monthly physicochemical variation of tropical island groundwater of Pulau Bidong, South China Sea. Groundwater for Sustainable Development. Vol. 10(8). DOI 10.1016/j.gsd.2020.100358.
  • ZACCHAEUS O., AZEEM A., ADEWALE T., SAHEED G., MUJEEB B. 2020. Assessment of physicochemical characteristics of groundwater within selected industrial areas in Ogun State, Nigeria. Environmental Pollutants and Bioavailability. Vol. 32(1) p. 100–113. DOI 10.1080/26395940.2020.1780157.
  • ZANINI L., ROBERTSON W.D., PTACEK C.J., SCHIFF S.L., MAYER T. 1998. Phosphorous characterization in sediments impacted by septic effluent at four sites in central Canada. Journal of Contaminant Hydrology. Vol. 33 p. 405–429. DOI 10.1016/S0169-7722(98)00082-5.
  • ŻELAZO J. 1993. Współczesne poglądy na regulację małych rzek nizinnych: Ochrona przyrody i środowiska w dolinach nizinnych rzek Polski [The recent views on the small lowland river training. In: Nature and environment conservation in the lowland river valleys in Poland]. Ed. L. Tomiałojć. Kraków. IOP PAN p. 145–154.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6e48d4f-e0b3-4f6f-bcab-b0a8f1057df6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.