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ABSTRACT 

This article presents a review of issues related to the estimation of Nakagami distribution parame-

ters. This distribution is often used for modeling transmission in a fading radio-communication 

channel, and in addition it well approximates other distributions. 
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INTRODUCTION 

During transmission a radio signal experiences random variations which 

are caused by interference occurring in a transmission channel. In order to de-

scribe this interference various probabilistic models are used. The main model of  

a received fading radio signal is a two-parameter distribution, e.g. the Rice distribu-

tion, and the Nakagami distribution. In order to describe a fading absolute diffuse 

signal a one-parameter distribution is used, e.g. the Rayleigh distribution. The Hoyt, 

Weibull one sided normal distribution, the Beckman three-parameter and four 

parameter distribution [14, 15] are also often used. A transmitted signal  tu when 

transmitted through a radio-communication channel experiences random fading 
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 tk , i.e. multiplicative and additive interference  tn . A signal  ty  received by  

a receiver is a sum of a useful signal  ts  and additive interference  tn , that is [14] 

                   tntttrtntutktntsty o  cos , (1) 

where:  

r(t) 0 — useful signal envelope;  

 (t) — useful signal instantaneous phase;  

o  — mean pulsation (angular frequency).  

 

It should be remembered that a useful signal envelope depends exclusively 

on fading only in the case of signals with angular modulation. In further considera-

tions we assume that all signals and interference occurring in an analogue model of 

a radio-communication channel are stationary. In addition we assume slow fading 

variations in comparison with the time of one elementary signal existence. Then in 

mathematical transformations we can use random variations instead of stochastic 

processes. 

THE NAKAGAMI DISTRIBUTION 

It follows from the analysis of the literature that the Nakagami distribution 

and the Rice distribution are among the most often used for modeling fading [14, 

15]. The Rice distribution is often used for modeling diffuse, a multipath transmis-

sion of a harmonic signal, when a dominant signal without fading occurs on one of 

the paths. This distribution is often used for modeling transmission in a satellite 

channel. The Nakagami distribution describes an even wider class of fading. Let the 

useful signal  ts  be described with the dependence 

       tttrts o   cos , (2) 

In order to describe the signal envelope  ts  the Nakagami distribution having 

the density  
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is used, 
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where:  

  — mean signal power defined as 

  2rE ; (4) 

    dttta

o

a




  exp1  — function gamma [2, 3]; 

m  — depths of fading, is the inverse of the standardized variance of the useful signal  

envelope square, i.e. the inverse of the standardized mean signal power.  

 
Parameter m  is calculated with the dependence  
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The Nakagami distribution is a chi distribution, in which parameter m  can 

also take non-integer values. The Nakagami distribution is often referred to as dis-

tribution m. 

A signal having the Nakagami envelope distribution has the following mo-

ment value of the k-order [13, 15] 
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The Nagami distribution approximates other distributions well. We obtain 

especially:  

 one-sided standard distribution, when m = 0.5;  

 the Rayleigh distribution, when m = 1;  

 c) the Rice distribution (Nakagami – n), when 222 a   and 
42

2

a
m




 ,  

where a  is the dominant amplitude of a determined harmonic signal, 22  is  

a variance of a narrow path signal (interference) having normal distribution of 

instantaneous value and mean value equal to zero, both of the signals being com-

ponents of the Rice signal. Parameters m  and   of the Rice distribution can be 

calculated when second order moments of the envelope are known. The depend-

ence (7) makes it possible to determine parameters of the Rice distribution using 

the Nakagami distribution  
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ESTIMATION OF PARAMETERS IN NAKAGAMI DISTRIBUTION  

BASED ON MEASURED DATA 

In a radio-communication channel deep fading occurs. Therefore, in order 

to calculate parameters in the Nakagami distribution on the basis of measured data 

magnitudes proportional to the envelope logarithm (expressed in decibels) are used. 

It is assumed that the logarithmic envelope v(t) is determined by the dependence 

  
w

r
tv log20 , (8) 

where:  

r  — random variable having the Nakagami distribution; 

w  — reference value (base for standardization). 

 
The variable  v  has the Nakagami exponential distribution of probability 

density [4, 15] 
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where:  

686.8log20  eK ; 
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We assume that the reference value w . Then 00 v  and logarith-

mically standardized variable nv  defined as 
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has the standardized Nakagami exponential distribution of density probability [4]  

  
  





























K

v

K

v
m

mK

m
vp nn

m

n

2
exp

2
exp

2
. (11) 

The mean value, root mean square value and variable variance nv can be 

calculated using the dependence [4] 

       mm
K

vE n ln
2

 ; (12) 



Estimation of Nakagami distribution parameters… 

1 (204) 2016  73 

          mmm
K

vE n
'2

2
2 ln

2
 ; (13) 

      m
K

vVarvVar n

'
2

4
 , (14) 

where:  

 x  — Euler’s psi function (digamma function), i.e. derivative logarithmic gamma  

function; 

 x'  — derivative of Euler’s psi function;  

 x'  — derivative of gamma function [2, 3].  

 

The parameters m  and   in the Nakagami distribution can be calculated 

using standardized moments of the Nakagami exponential distribution. The variance 

determined in (14), which is not dependent on the reference value, is the most useful 

for estimating the parameter m . In the expression (14) there occurs the derivative 

of Euler’s psi function. Therefore, an analytical determination of the parameter m  

as a solution to the equation (14) is impossible. Function  m'  can be approxi-

mated using the equation 

   BmCm  ' . (15) 

Constants C and B  of the approximating function can be determined using 

the regression method. The accurate values of the function  m'  for some selected 

values of m can be calculated on the basis of the dependence [3] 
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After using the regression method for the values  m' calculated on the 

basis of the dependence (16) and for  10...,,5.0m  the following values of 

the approximating function parameters were obtained 2343.1B  and 6645.1C , 

that is 

   2343.1' 6645.1  mm . (17) 
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Fig. 1. The accurate values of the function  m'  (line with squares) and the values calculated 

on the basis of the approximating function (continuous line)  

 

The selection of the parameterm  range was based on the analysis of dynamic 

probability of element error, for  10,...,5.0m significant influence of the parame-

ter m  on the transmission quality is recorded [15]. The curvilinear correlation 

coefficient, being the estimation of the quality of the obtained approximation is 

0.9941. Figure 1 presents a diagram of the function  m'  as the result of using the 

regression analysis (continuous line). The figure also shows the accurate values of 

the function (line with squares) calculated on the basis of the dependence (16). The 

dependence (17) makes it possible to obtain the estimator m


for the parameter m , 

which assumes the form 
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 — estimator of mean logarithmic value of envelope v ;  

L — number of measurements.  

 
The second parameter in the Nakagami distribution can be calculated by com-

paring the standardized Nakagami exponential distribution with the non-standardized 

Nakagami distribution. The value 0v  can be presented as  

           mm
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We also use the regression method. We assume the approximation  

     0;ln  DmDmm E . (20) 

As a result of using the regression method, for the values of the function

 m  determined on the basis of the table [3], the following values of the approxi-

mating function parameters E = 1.0787 and D = 0.5904 were obtained. The curvi-

linear correlation coefficient is 0.9992. Taking into account the obtained result and 

the equation (12) the mean value of variable nv  can be written as  

   0787.15641.2  mvE n
. (21) 

Thus the value of the parameter   can be calculated on the basis of the 

dependence  
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Using the measured data we estimate the mean value of logarithmic enve-

lopev . The estimate 


 of the parameter   can be obtained using the following 

estimator 
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where  
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 — estimator 0v . 

 
The presented estimators of the Nakagami distribution parameters require 

estimating the mean value and variance of envelope. Examples of somewhat different 

ways, based, among others, on maximizing probability functions, were presented in 

publications [1, 6–8, 11, 16, 19, 20]. For first-order approximation of function 

 m , i.e.      mmm 2/1ln  , in [7] obtained was a parameter estimator m  

of the Nakagami distribution determined with the dependence 
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And for the second-order approximation of the function  m , i.e. 

       212/12/1ln mmmm   obtained was  
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In [1] a comparative analysis was presented for 3 different estimators of 

the parameter m , which can be written as  

a) for standardized estimator 
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b) for Tolparev-Polyakov estimator  
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c) for Lorenz estimator  
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It follows from the analysis presented in [1] that the standardized Lorenz 

estimators generate similar results. The Tolparev-Polyakov estimator is convenient 

for calculating where the number of measurements is small. 

Another form of estimator for the parameter m in the Nakagami distribution 

is presented in publications [6, 17, 18]. In order to calculate it a third-moment and 

first-moment quotient was used. This quotient, after transformations and after 

taking into account the dependence    aaa  1  is shown as  
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From the dependence (29) we obtain the following form of estimator of the 

parameter m  
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In publication [6] it was shown, using numerical calculations, that the estima-

tor tm


 approximates the parameter m  better than the standardized estimator znm


. 

In publications [6, 8, 9] further generalizations were made and another es-

timator was presented. To calculate it k order moments were used for a random 

variable calculated with the dependence 

 p
ii rx  , for 0;...,,2,1  pNi , (31) 

k-order moment of the variable x  assumes the form determined with the equation 

[6, 8, 9] 
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Obviously for 1p  we obtain a dependence for k-order of random variable 

representing the Nakagami envelope, which is determined by means of the equa-

tion (6). In order to calculate the values of estimator of  the parameter m  the order 

12 p  and first order moment quotient was taken into account, that is [6] 
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After transformations we obtain [6] 
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and a new estimator [6] 
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It follows from the analysis presented in publication [6] that the estimation 

quality of the parameter m  in the Nakagami distribution increases together with 

the increase in the parameter p . In addition, in a special case when 5.0p  we 

obtain a standardized estimator, i.e. znmm


2 , and for 1p  we obtain tmm


1 . 

For 2p we obtain another form of estimator determined with the dependence [6] 
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It follows from the analysis of publications [6, 8, 9] that the variance of es-

timator 
2

1m


needs to be verified. It must be compared with the variance of estima-

tors 1m


 or tm


. 

Another estimator in the Nakagami distribution was calculated using the 

known quotient of moments of variable p
ii rx   [9] 
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where 

ba   — parameters which are integers.  

 
It follows from the analysis presented in publication [9] that the equation 

(37) can approximated using the dependence 
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where coefficients 210 ,, ccc  depend on the values of parameters pba ,, . 

 

For 1a  and 0b  obtained was another estimator m  determined as [9] 
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and the coefficients 210 ,, ccc , in order to facilitate the analysis, were presented in 

publication [9] in the tabular form. 

 

One more estimator was obtained after taking into account the dependence 

[9] 
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Taking into account only the first two components of the approximating 

polynomial an estimator, determined with the equation [9], was obtained  
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The presented different dependences which can be used to determine the 

parameter m in the Nakagami distribution do not exhaust the broad analysis of this 

issue covered in world literature. Other considerations were, among others, dis-

cussed in publications [5, 10–12, 16]. 

CONCLUSIONS 

This article constitutes a review of the issues relating to the estimation of 

the Nakagami distribution parameters. In world literature this issue has been at-

tracting interest for many years, which is shown by numerous publications. To the 

article author’s knowledge, there is a lack of such considerations in the Polish litera-

ture. The presented Nakagami distribution estimator parameters can be used to 

assess the transmission quality in a radio-communication fading channel. They can 

also be used to design optimal receivers. At present, at the Gdynia Maritime Academy 

experimental research is being carried out in the real propagation environment, 

which will make it possible to estimate parameters of a radio-communication 

channel and to model transmission in a radio-communication fading channel. The 

aim of further investigations will also be comparative analysis of particular esti-

mators. 
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E S T Y M A C J A  P A R A M E T R Ó W   
R O Z K Ł A D U  N A K A G A M I E G O   

O P I S U J Ą C E G O  K A N A Ł  Z  Z A N I K A M I  

STRESZCZENIE 

W artykule przedstawiono estymatory rozkładu Nakagamiego. Rozkład ten jest często stosowany 

do modelowania transmisji w kanale radiokomunikacyjnym z zanikami, ponadto dobrze aproksy-

muje inne rozkłady. 

Słowa kluczowe:  

kanał radiokomunikacyjny z zanikami, rozkład prawdopodobieństwa obwiedni, estymacja para-

metrów rozkładu. 


