PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pilot Plant Study on Biological Treatment of Domestic Sewage Using Biopipe System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Biopipe system is the first biological wastewater treatment system designed to remove carbonaceous and nitrogenous substances entirely within a pipe. The transformation mechanisms in the Biopipe system can be modelled using a physical model, and several experiments have been carried out to this study. The experimental work was carried out at the Al-Barakia wastewater treatment plant (BWWTP) in Iraq’s Najaf governorate that will be done to obtain continuous source of sanitary sewage flow and thus, maintain the pilot plant operation. Two tanks, two pumps, a Flow Control and Measuring Device, PVC Pipes, and an Aeration System make up the physical model. Seeding using activated sludge from a similar plant, The Biopipe system requires 28 days to get steady results and maximal COD, TN and TSS removal efficiency. The tests were carried out on a Biopipe system with recirculation with different value of influent flow rate and different recirculation ratio. The most important findings of the Biopipe system application indicated that system is better for removing COD than TN. When the recirculation ratio was equal to 9, the removal efficiency of chemical oxygen demand (COD) and total nitrogen (TN) achieved 66.50% respectively. The dissolved oxygen concentration rises to 5.75 mg/l when the recirculation flow rate is increased to 216 m3/day. In addition, it was found that the removal efficiency of biodegradable organics can be enhanced in case of low influent flow rate and high recirculation flow rate.
Rocznik
Strony
139--146
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Department of Facilities and Water Resources Engineering, College of Engineering, University of Kufa, Najaf, Iraq
  • Department of Civil Engineering, College of Engineering, University of Basrah, Basrah, Iraq
Bibliografia
  • 1. Almeida, M.C., Butler D., Davies, J.W. 1999. Modelling in-sewer changes in wastewater quality under aerobic conditions. Wat. Sci. Tech., 39(9), 63–71.
  • 2. Bagatur, T., Onen, F., Kayaalp, N. 2018. Testing of system performance for different aerator configuration using venture”, El-Cezerî Journal of Science and Engineering, 5(3), 724–733,
  • 3. Baylar, A., Aydin, M.C., Unsal, M., Ozkan, F. 2009. Numerical modeling of venturi flows for determining air injection rates using FLUENT V6.2. J. of Mathematical and Computational Applications, 14(2), 97–108.
  • 4. Biopipe Global Corp. 2016. Startup Biopipe’s biological pipes aim to promote sustainable water treatment. Available at: https://www.environmental-expert.com/articles/startup-biopipe-s-biological-pipes-aim-to-promote-sustainable-water-treatment-846702.
  • 5. Biopipe Global Corp. 2016. Tackling the world`s wastewater problems with a single pipe. Available at: https://www.environmental-expert.com/articles/tackling-the-world-s-wastewater-problems-with-a-single-pipe-846563
  • 6. Garsdal, H., Mark, O., Jesper D¢rge, J., Jepsen, S. 1995. Mousetrap: Modelling of water quality processes and the interaction of sediments and pollutants in sewers. Wat. Sci. Tech., 31(7), 33–41.
  • 7. Hariharan, S. 2016. Startup biopipes’s biological pipes aim to promote sustainable water treatment. Available at: https://www.entrepreneur.com/article/281892
  • 8. Huisman, J.L., Gujer, W. 2002. Modelling wastewater transformation in sewers based on ASM3. Water Science and Technology, 45(6), 51–60.
  • 9. Hvitved-Jacobsen, T., Vollertsen, J., Matos, J.S. 2002. The sewer as a bioreactor – a dry weather approach. Water Science and Technology, 45(3), 11–24.
  • 10. Ilie, M., Ghita, G., Matei, M., Deak, G., Dumitru, D.F., Moncea, A.M. 2018. Numerical modelling and simulation of wastewater treatment processes in sewage system. J. of Environmental Protection and Ecology, 19(2), 646–655.
  • 11. Jiang, F., Leung, H.W.D., Li, S.Y., Lin, G.S., Chen, G.H. 2007. A new method for determination of parameters in sewer pollutant transformation process model. Environmental Technology, 28(11), 1217–1225.
  • 12. Mazzi Injector Company, LLC,500 Rooster Drive, Bakersfield, CA 93307–9555 USA, 2016.
  • 13. Ozer, A., Kasirga, E. 1995. Substrate removal in long sewer lines. Wat. Sci. Tech., 31(7), 213–218.
  • 14. Ozkan, F., Ozturk, M., Baylar, A. 2006. Experimental investigations of air and liquid injection by Venturi tubes. Water and Environment Journal, 20, 114–122.
  • 15. Pai, T.Y., Chen, C.L., Chung, H., Ho, H.H., Shiu, T.W. 2010. Monitoring and assessing variation of sewage quality and microbial functional groups in a trunk sewer line, Environ Monit Assess, 171, 551–560.
  • 16. Seidl, M., Servais, P., Martaud, M., Gandouin, C., Mouchel, J.M. 1998. Organic carbon biodegradability and heterotrophic bacteria along a combined sewer catchment during rain events. Wat. Sci. Tech., 37(1), 25–33.
  • 17. Tanaka, N., Hvitved-Jacobsen, T., Ochi, T., Sato N. 2000. Aerobic-anaerobic microbial wastewater transformations and re-aeration in an air-injected pressure sewer. Water Environment Research, 72(6), 665–674.
  • 18. Tanaka, N., Takenaka, K. 1995. Control of hydrogen sulfide and degradation of organic matter by air injection into a wastewater force main. Wat. Sci. Tech., 31(7).
  • 19. Zhu, J., Miller, C.F., Dong, C., Wu, X., Wang, L., Mukhtar S. 2007. Aerator module development using venturi air injectors to improve aeration efficiency. J. of Applied Engineering in Agriculture, 23(5), 661–667.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6ddf8b4-f3cb-4b09-bc22-a802ad1b9ac7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.