PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cross-waves and pulsating flows in the side-channel spillway - an experimental approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Potentially hazardous side-channels of complex geometry need to be investigated using detailed hydraulic physical models. This study aims to analyse the cross-waves pattern and pulsating flow using a side-channel spillway physical model. This study compares the cross-waves pattern were measured using an experimental installation set to generate cross-waves on the surface (original series) with another structure that did not produce cross-waves (modified series). The results showed that the geometry of the left wall caused instability in flow patterns and secondary flows. The starting point of Q2 discharge was detected by minor turbulence on the water surface near the left wall at a water depth of 3.3 m at the starting point of the wall, but with no overtopping. Cross-waves formed downstream at the right wall crosswise, lower than at the left wall. The height of the cross-wave increased substantially from Q100 to Q1000 discharges leading to overtoppings near the left wall at a water depths of 4.2 and 5.0 m at the starting point of the wall, and near the right wall at a water depths of 3.8 and 4.0 m at the upstream point of the wall. The modifications provided optimal hydraulic conditions, i.e. elimination of cross-waves and non-uniform flows. The Vedernikov and Montouri numbers showed that both original and modified series did not enter the area where the pulsating flow occurred. This indicated that both series were free from the pulsating flow.
Wydawca
Rocznik
Tom
Strony
51--57
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Jl. Tgk. Syech Abdur-Rauf No. 7, Darussalam, 23111, Banda Aceh, Indonesia
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Jl. Tgk. Syech Abdur-Rauf No. 7, Darussalam, 23111, Banda Aceh, Indonesia
  • Universitas Syiah Kuala, Engineering Faculty, Electrical Engineering Department, Darussalam, Banda Aceh, Indonesia
autor
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Jl. Tgk. Syech Abdur-Rauf No. 7, Darussalam, 23111, Banda Aceh, Indonesia
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Jl. Tgk. Syech Abdur-Rauf No. 7, Darussalam, 23111, Banda Aceh, Indonesia
Bibliografia
  • AKMAL 2014. Modifikasi pada saluran transisi pelimpah bendungan untuk mengurangi terbentuknya aliran silang di saluran peluncur (Studi kasus: Model bendungan Bener) [Modifications to the dam spill transition channel to reduce the formation of cross flow in the chute channel (Case study: Bener dam model)]. Unspecified thesis. Yogyakarta. Gadjah Mada University.
  • ALI A.S., YOUSIF O.S.Q. 2019. Characterizations of flow over stepped spillways with steps having transverse slopes. IOP Conference Series: Earth and Environmental Science. Vol. 344, 012019. DOI 10.1088/1755-1315/344/1/012019.
  • AZMERI A., BASRI H., YULIANUR A., ZIANA Z., JEMI , F.Z., RAHMAH R.A. 2021. Hydraulic jump and energy dissipation with stepped weir. Journal of Water and Land Development. No. 51 p. 56–61. DOI 10.24425/jwld.2021.139015.
  • CASSIDY J.J. 1990. Fluid mechanics and design of hydraulic structures. Journal of Hydraulic Engineering. Vol. 116(8). DOI 10.1061/(ASCE)0733-9429(1990)116:8(961).
  • CHOW V.T. 1992. Open channel hydraulics. New York. McGraw-Hill Book pp. 680.
  • DI CRISTO C., IERVOLINO M., VACCA A., ZANUTTIGH B. 2010. Minimum channel length for roll-wave generation. Journal of Hydraulic Research. Vol. 46(1) p. 73–79. DOI 10.1080/00221686.2008.9521844.
  • Dinas Sumber Daya Air 2020. Laporan final model test dan penyempurnaan desain bendungan Krueng Kluet Kabupaten Aceh Selatan [Final report model test and design completion of the Krueng Kluet Dam Kab. Aceh Selatan]. Banda Aceh.
  • ELNIKHELY E.A. 2018. Investigation and analysis of scour downstream of a spillway. Ain Shams Engineering Journal. Vol. 9(4) p. 2275–2282. DOI 10.1016/j.asej.2017.03.008.
  • IPPEN A.T., DAWSON J.H. 1951. Design of channel contractions. Transactions of ASCE. Vol. 116(1) p. 326–346.
  • JULIEN P.Y., HARTLEY D.M. 2010. Formation of roll waves in laminar sheet flow. Journal of Hydraulic Research. Vol. 24(1) p. 5–17. DOI 10.1080/00221688609499329.
  • KUMCU S.Y. 2016. Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis. KSCE Journal of Civil Engineering. Vol. 21(3) p. 994–1003. DOI 10.1007/s12205-016-1257-z.
  • LEGONO D., HAMBALI R., KRISNAYANTI D.S. 2019. Experimental study on the side channel spillway and its impact on the jump, cross flow and energy dissipation. Jurnal Teknologi. Vol. 81(6) p. 169–178. DOI 10.11113/jt.v81.13811.
  • LOPES P., BUNG D.B., LEANDRO J., CARVALHO R.F. 2015. The effect of cross-waves in physical stepped spillway models. E-proceedings of the 36th IAHR World Congress. 28.06–03.07.2015 The Hague, the Netherlands. DOI 10.13140/RG.2.1.1882.3528.
  • LUCAS J., LUTZ N., LAIS A., HAGER W.H., ASCE F., BOES R.M. 2015. Side-channel flow: Physical model studies. Journal of Hydraulic Engineering. Vol. 141(9), 05015003. DOI 10.1061/(ASCE)HY.1943-7900.0001029.
  • MOUSAVIMEHR S.M., YAMINI O.A., KAVIANPOUR M.R. 2021. Performance assessment of shockwaves of chute spillways in large dams. Shock and Vibration. Vol. 2021, 6634086 p. 1–17. DOI 10.1155/2021/6634086.
  • PARSAIE A., HAGHIABI A.H., MORADINEJAD A. 2015. CFD modeling of flow pattern in spillway’s approach channel. Sustainable Water Resources Management. Vol. 1 p. 245–251. DOI 10.1007/s40899-015-0020-9.
  • PCA 2002. Design manual for RCC spillways and Overtopping protection. Skokie. Portland Cement Association pp. 97.
  • PRASETYORINI L., ANWAR N., WARDOYO W. 2020. A physical hydraulic model test to solve the problem on spillway dam. International Journal of GEOMATE. Vol. 19(73) p. 170–176. DOI 10.21660/2020.73.64231.
  • SOSRODARSONO S., TAKEDA K. (eds.) 1981. Bendungan tipe urugan [Heap type dam]. Jakarta. Pradnya Paramita Publisher pp. 325.
  • USACE 1990. Engineering and design. Hydraulic design of spillways. Engineer Manual 1110-2-1603. Washington, DC. Department of the Army U.S. Army Corps of Engineers.
  • USBR 1978. Design of small canal structures. Denver, USA. U.S. Department of the Interior Bureau of Reclamation pp. 435.
  • USBR 1987. Design of small dams. 3 rd ed. Denver. U.S. Department of the Interior, Bureau of Reclamation pp. 860.
  • WIBOWO A.C. 2016. Pemodelan numerik pelimpah samping waduk Telagawaja Bali Kabupaten karangasem dengan analisa komputasi fluida dinamis [Numerical modeling of Telagawaja reservoir Bali side spillway Karangasem Regency with dynamic fluid computing analysis]. Jurnal Teknik Pengairan. Vol. 7(2) p. 184–192.
  • YULIANUR A., AZMERI A., ZIANA Z., JEMI F.Z., MUSLEM M. 2022. An experiment of energy dissipation on USBR IV stilling basin – Alternative in modification. Journal of Water and Land Development. No. 53 p. 68–72. DOI 10.24425/jwld.2022.140781.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6dc8395-bdf9-457c-a5d9-946e6e3d3db0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.