PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Matrix logarithmic wave equation and multi-channel systems in fluid mechanics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We formulate the mapping between a large class of nonlinear wave equations and flow equations for a barotropic fluid with internal surface tension and capillary effects. Motivated by statistical mechanics and multi-channel physics arguments, we focus on wave equations with logarithmic nonlinearity, and further generalize them to matrix equations. We map the resulting equation to flow equations of multi-channel or multi-component Korteweg-type materials. For some special cases, we analytically derive Gaussian-type matrix solutions and study them in the context of fluid mechanics.
Rocznik
Strony
843--852
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Durban University of Technology, Institute of Systems Science, Durban, South Africa
Bibliografia
  • 1. Acton F.S., 1997, Numerical Methods that Work, Mathematical Association of America, Washington
  • 2. Anderson D.M., Mc Fadden G.B., Wheeler A.A., 1998, Diffuse-interface methods in fluid mechanics, Annual Review of Fluid Mechanics, 30, 139-165
  • 3. Antanovskii L.K., 1996, Microscale theory of surface tension, Physical Review, E, 54, 6285-6290
  • 4. Avdeenkov A.V., Zloshchastiev K.G., 2011, Quantum Bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent, Zeitschrift f¨ur Naturforschung, 44, 195303
  • 5. Bialynicki-Birula I., Mycielski J., 1976, Nonlinear wave mechanics, Annals of Physics, 100, 62-93
  • 6. Bialynicki-Birula I., Mycielski J., 1979, Gaussons: solitons of the logarithmic Schrodinger equation, Physica Scripta, 20, 539-544
  • 7. Bouharia B., 2015, Stability of logarithmic Bose-Einstein condensate in harmonic trap, Modern Physics Letters B, 29, 1450260
  • 8. Brasher J.D., 1991, Nonlinear wave mechanics, information theory, and thermodynamics, International Journal of Theoretical Physics, 30, 979-984
  • 9. Cızek J., 1966, On the correlation problem in atomic and molecular systems: Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods, Journal of Chemical Physics, 45, 4256-4266
  • 10. De Martino S., Falanga M., Godano C., Lauro G., 2003, Logarithmic Schrodinger-like equation as a model for magma transport, Europhysics Letters (EPL), 63, 472-475
  • 11. Dell’Isola F., Kosiński W., 1993, Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layer, Archives of Mechanics, 45, 333-359
  • 12. Dunn J.E., Serrin J.B., 1985, On the thermomechanics of interstitial working, Archive for Rational Mechanics and Analysis, 88, 95-133
  • 13. Hagen G., Hjorth-Jensen M., Jansen G.R., Papenbrock T., 2016, Emergent properties of nuclei from ab initio coupled-cluster calculations, Physica Scripta, 91, 063006
  • 14. Lauro G., 2008, A note on a Korteweg fluid and the hydrodynamic form of the logarithmic Schrodinger equation, Geophysical and Astrophysical Fluid Dynamics, 102, 373-380
  • 15. McClain J., Lischner J., Watson T., Matthews D.A., Ronca E., Louie S.G., Berkelbach T.C., Chan G.K.L, 2016, Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to the GW and related approximations, Physical Review, B, 93, 235139
  • 16. Rosen G., 1968, Particlelike solutions to nonlinear complex scalar field theories with positivedefinite energy densities, Journal of Mathematical Physics, 9, 996-998
  • 17. Rosen G., 1969, Dilatation covariance and exact solutions in local relativistic field theories, Physical Review, 183, 1186-1188
  • 18. Rylov Yu.A., 1999, Spin and wave function as attributes of ideal fluid, Journal of Mathematical Physics, 40, 256-278
  • 19. Scott T.C., Zhang X., Mann R.B., Fee G.J., 2016, Canonical reduction for dilatonic gravity in 3+1 dimensions, Physical Review, D, 93, 084017
  • 20. Yasue K., 1978, Quantum mechanics of nonconservative systems, Annals of Physics, 114, 479-496
  • 21. Zloshchastiev K.G., 2010, Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences, Gravitation and Cosmology, 16, 288-297
  • 22. Zloshchastiev K.G., 2011, Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory, Acta Physica Polonica B, 42, 261-292
  • 23. Zloshchastiev K.G., 2012, Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation, European Physical Journal, B, 85, 273
  • 24. Zloshchastiev K.G., 2017, Stability and metastability of trapless Bose-Einstein condensates and quantum liquids, Zeitschrift f¨ur Naturforschung, A, 72, 677-687
  • 25. Zloshchastiev K.G., 2018a, On the dynamical nature of nonlinear coupling of logarithmic quantum wave equation, Everett-Hirschman entropy and temperature, , Zeitschrift f¨ur Naturforschung, A, 73, 619-628
  • 26. Zloshchastiev K.G., 2018b, Nonlinear wave-mechanical effects in Korteweg fluid magma transport, Europhysics Letters (EPL), 122, 39001
  • 27. Znojil M., Ruzicka F., Zloshchastiev K.G., 2017, Schrodinger equations with logarithmic self-interactions: from antilinear PT-symmetry to the nonlinear coupling of channels, Symmetry, 9, 165
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6da38fb-c6ce-43b4-ac7d-1ae465f87a20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.