PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initial Assessment of Changes in Water Quality in the Wrocław City Moat Reservoirs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to initially assess the changes in the physicochemical composition of water in the reservoirs of the city moat (Wrocław) in the context of the analysis of the type of pollutants flowing into the inner-city water reservoirs and in relation to the impact of air quality directly in the vicinity of the reservoirs. As an element of the urban landscape, the inner-city water reservoirs play an important role in improving the local climatic conditions, increasing the biodiversity of the landscape, and eliminating the negative impact of urban heat islands. The measurement campaign was conducted for 11 months. The following parameters were determined in the analyzed water samples: turbidity, pH, electrolytic conductivity, as well as concentrations of nitrogen forms (ammonium nitrogen, nitrite nitrogen, and nitrate nitrogen), total phosphorus and sulfates. Additionally, the air quality parameters in the direct location of the reservoirs were analyzed, including: concentrations of nitrogen oxides, nitrogen dioxide, sulfur dioxide, humidity level and selected meteorological data, i.e. daily precipitation and average daily air temperature. The average concentrations of nitrogenous forms in the waters of the downtown water reservoir were as follows: ammonium nitrogen 0.155 mg•dm-3, nitrite nitrogen 0.084 mg•dm-3, and nitrate nitrogen 1.15 mg•dm-3. The sulfate concentrations showed greater variability 67.805–180.973 mg•dm-3. On the basis of the conducted observations and analyses, a statistically significant relationship was found between the quality parameters of water in municipal water reservoirs and external factors such as air quality, and in particular the correlation of air humidity with the concentration of nitrite and nitrate ions in the water. The conducted research confirms the influence of air quality on the levels of pollutants in the waters collected in the urban water reservoir.
Rocznik
Strony
58--66
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering, The Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24, 50-363 Wrocław, Poland
  • Institute of Environmental Engineering, The Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24, 50-363 Wrocław, Poland
  • Institute of Environmental Engineering, The Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24, 50-363 Wrocław, Poland
Bibliografia
  • 1. Augustyniak R., Neugebauer M., Kowalska J. Szymański D., Wiśniewski G., Filipkowska Z., Grochowska J., Lopata M., Parszuto K., Tandyrak R. 2017. Bottom deposits of stratified, seepage, urban lake (On Example Of Tyrsko Lake, Poland) As A Factor Potentially Shaping Lake Water Quality. Journal of Ecological Engineering, 18, 55–62. https://doi.org/10.12911/22998993/74624
  • 2. Barałkiewicz D., Chudzińska M., Szpakowska B., et al. 2014. Storm water contamination and its effect on the quality of urban surface waters. Environ Monit Assess, 186, 6789–6803. https://doi.org/10.1007/s10661-014-3889-0
  • 3. Beutel M. 2016. The Other Internal Loading – A Look at Nitrogen and Mercury. NALMS Lakeline, Spring, 13–16.
  • 4. Bhat M.M., Narain K., Andrabi S.Z., Shukla R.N., Yunus M. 2012. Assessment of heavy metal pollution in urban pond ecosystems. Universal Journal of Environmental Research and Technology, 2(4), 225–232.
  • 5. Céréghino R., Biggs J., Oertli B., Declerck S. 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiology, 597, 1–6. https://doi.org/10.1007/s10750-007-9225-8
  • 6. Chief Inspectorate of Environmental Protection GIOŚ. Measurement Data Bank – Processed data (access on 20.10.2021).
  • 7. Ciecierska H., Kolada A. 2014. ESMI: a macrophyte index for assessing the ecological status of lakes. Environ Monit Assess, 186, 5501–5517.
  • 8. Gorgoń J., Gocko-Gomoła K. 2016. Woda w mieście jako czynnik wzmacniający jego odporność na zmiany klimatu. Zeszyty Naukowe Wyższej Szkoły Technicznej w Katowicach, 8, 31–44. (in Polish)
  • 9. Hassall C. 2014. The ecology and biodiversity of urban ponds. WIREs Water, 1, 187–206. https://doi.org/10.1002/wat2.1014
  • 10. Hill M.J., Biggs J., Thornhill I., Briers R.A., Gledhill D.G., White J.C., Wood P.J., Hassall C. 2017. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob Change Biol, 23, 986–999. https://doi.org/10.1111/gcb.13401
  • 11. Institute of Meteorology and Water Management – State Research Institute IMGW-PIB - Processed data (access on 27.04.2021).
  • 12. Jasiński R., Galant-Gołębiewska M., Nowak M., Ginter M., Kurzawska P., Kurtyka K., Maciejewska M. 2021. Case Study of Pollution with Particulate Matter in Selected Locations of Polish Cities. Energies, 14, 2529. https://doi.org/10.3390/en14092529
  • 13. Jørgensen K.S. 1989. Annual Pattern of Denitrification and Nitrate Ammonification in Estuarine Sediment. Applied and Enviromental Microbiology, 55(7), 1841–1847.
  • 14. Jurczak T., Wojtal-Frankiewicz A., Kaczkowski Z., Oleksińska Z., Bednarek A., Zalewski M. 2018. Restoration of a shady urban pond - The pros and cons. Journal of Environmental Management, 217, 919–928. https://doi.org/10.1016/j.jenvman.2018.03.114
  • 15. Kinuma D., Qian C., Yamada T. 2016. A fundamental study in the characteristics of water quality for improvement in the urban closed water body. Procedia Engineering, 154, 565–573.
  • 16. Knapp H. 2018. Anova and kruskal-wallis test. In Intermediate statistics using spss. SAGE Publications, Inc, 107–140. https://dx.doi.org/10.4135/9781071802625
  • 17. Kuoppamäki K., Setälä H., Rantalainen A.L., Johan Kotze D. 2014. Urban snow indicates pollution originating from road traffic. Environmental Pollution, 195, 56–63. https://doi.org/10.1016/j.envpol.2014.08.019
  • 18. Kuśnierz M., Łomotowski J. 2015. Usibng Avrami equation in the studies on changes in granulometric composition of algal suspension. Hydrobiologia, 758, 243–255.
  • 19. Lee A.C., Maheswaran R. 2011. The health benefits of urban green spaces: a review of the evidence. J Public Health (Oxf), 33(2), 212–222. https://doi.org/10.1093/pubmed/fdq068
  • 20. McEnroe N.A., Buttle J.M., Marsalek J. et al. 2013. Thermal and chemical stratification of urban ponds: Are they ‘completely mixed reactors’?. Urban Ecosyst, 16, 327–339. https://doi.org/10.1007/s11252-012-0258-z
  • 21. Nguyen H.Q., Radhakrishnan M., Huynh T.T.N., Baino-Salingay M.L., Ho L.P., Van der Steen P., Pathirana A. 2017. Water quality dynamics of urban water bodies during flooding in Can Tho City, Vietnam. Water, 9 260.
  • 22. Nguyen K.T., Nguyen H.M., Truong C.K., Ahmed M.B., Huang Y., Zhou J.L. 2019. Chemical and microbiological risk assessment of urban river water quality in Vietnam. Environ Geochem Health, 41, 2559–2575.
  • 23. Peretyatko A., Teissier S., De Backer S., Triest L. 2012. Biomanipulation of hypereutrophic ponds: when it works and why it fails. Environ Monit Assess, 184, 1517–1531. https://doi.org/10.1007/s10661-011-2057-z
  • 24. Pokorny J., Hauser V. 2002. The restoration of fish ponds in agricultural landscapes. Ecological Engineering, 18, 555–574.
  • 25. Revitt D.M., Lundy L., Coulon F., Fairley M. 2014. The sources, impact and management of car park runoff pollution: A review. Journal of Environmental Management, 146, 552–567. http://dx.doi.org/10.1016/j.jenvman.2014.05.041
  • 26. Rosinska J., Kozak A., Dondajewska R., Gołdyn R. 2017. Cyanobacteria blooms before and during the restoration process of a shallow urban lake. Journal of Environmental Management, 198, 340–347. https://doi.org/10.1016/j.jenvman.2017.04.091
  • 27. Rysgaard S., Risgaard-Petersen N., Sloth N.P. 1996. Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in Southern France. Hydrobiologia, 329, 133–141.
  • 28. Selmi W., Weber C., Rivière E., Blond N., Mehdi L., Nowak D. 2016. Air pollution removal by trees in public green spaces in Strasbourgcity, France. Urban Forestry & Urban Greening, 17, 192–201. http://dx.doi.org/10.1016/j.ufug.2016.04.010
  • 29. Søndergaard M., Jensen J.P., Jeppesen E. 2001. Retention and Internal Loading of Phosphorus in Shallow, Eutrophic Lakes. TheScientificWorld, 1, 427–442. https://doi.org/10.1100/tsw.2001.72
  • 30. Whiteside M., Marvin Herndon J. 2019. Role of Aerosolized Coal Fly Ash in the Global Plankton Imbalance: Case of Florida’s Toxic Algae Crisis. Asian Journal of Biology, 8(2), 1–24.
  • 31. Wijesiri B., Deilami K., McGree J., Coonetilleke A. 2018. Use of surrogate indicators for the evaluation of potential health risks due to poor urban water quality: A Bayesian Network approach. Environmental Pollution, 233, 655–661.
  • 32. Zimmermann F., Lux H., Maenhaut W., Matschullat J., Plessow K., Reuter F., Wienhaus O. 2003. A review of air pollution and atmospheric deposition dynamics in southern Saxony, Germany, Central Europe. Atmospheric Environment, 37, 671–691.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6d86f69-c86a-4440-9c04-6924bf9bdae3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.