PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Removal of Copper, Cadmium, and Lead Ions by Adsorption Method using Chitosan from Fish Scales and its Application in Laboratory Wastewater Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Higher education requires learning in the form of practice and research which is often carried out in the laboratories. The research completed in the laboratory usually produces wastewater which not only has a high organic content, but also contains heavy metal ions, such as copper (Cu), cadmium (Cd), and lead (Pb). These heavy metal ions will harm the environment when directly disposed of without being treated first. One of methods to reduce the level of heavy metal ions in laboratory wastewater is adsorption using chitosan. Therefore, this research was focused on removal heavy metal ions in laboratory wastewater by adsorption method using a chitosan derived from fish scales. The objective of this research was to investigate the effect of pH on the removal of Cu, Cd, and Pb ions in the treatment of synthetic wastewater using chitosan. The effect of chitosan dose on the treatment of laboratory wastewater was also examined. Initially, the chitosan was applied in reducing the metal ions in synthetic wastewater. The synthetic wastewater was prepared using single-component and multi-component samples of heavy metal ions. In this study, the pH was varied from 3–7 for application of chitosan on single and multicomponent synthetic wastewater experiments. Optimum pH was produced and then used to remove the metal ions included in the laboratory wastewater sample. The chitosan dose was varied 0.5–2 g/L. As a result, the highest removal percentage for the reduction of Cu, Cd, and Pb metal ions in single-component synthetic wastewater was at pH 7. However, the highest removal percentage for the reduction of Cu, Cd, and Pb metal ions in multicomponent synthetic wastewater were found in different pH, such as Cu ions at pH 5, Cd ions at pH 7, and Pb ions at pH 3. When applied to laboratory wastewater assessments with pH of 7 and chitosan doses of 0.5–2 g/L, the highest percentage removal of Pb ions (93.75%) was reached when using chitosan dosage of 1.5 g/L; the highest percentage removal of Cu ions (28.99%) was obtained when using chitosan dosage of 2 g/L. Alas, the chitosan dose of 0.5–2 g/L did not have a significant effect on reducing the Cd ions.
Słowa kluczowe
Twórcy
autor
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia
  • Water and Wastewater Engineering Research Group, UPT Integrated Laboratory, Universitas Serasan, Jl. H. Pangeran Danal No. 142, Muara Enim 31312, South Sumatra, Indonesia
autor
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia
autor
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia
autor
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia
  • Educational Laboratory Institution, UPT Integrated Laboratory, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia
Bibliografia
  • 1. Agustina, T.E., Arita, S., Melwita, E., Bahrin, D., Marcelia, R., Irdiansyah, H., Ramadhini, T. K. 2024. Laboratory wastewater treatment by using combination methods of AOPs and chemical-physical pretreatments. Ecological Engineering & Environmental Technology, 25(1), 216–226.
  • 2. Agustina, T.E., Habiburrahman, M., Amalia, F., Arita, S., Faizal, M., Novia, Gayatri, R. 2022. Reduction of copper, iron, and lead content in laboratory wastewater using zinc oxide photocatalyst under solar irradiation. Journal of Ecological Engineering, 23(10), 107–115.
  • 3. Ahmad, A., Khabibi, K., Nuryanto, R., Haris, A. 2020. Adsorbsi ion Tembaga (II) dengan kitosan dari kulit udang putih yang termodifikasi tripolifosfat. Media Bina Ilmiah, 14(6), 2781–2790.
  • 4. Amalraj A., Jude S., Gopi S. 2020. Polymer blends, composites and nanocomposites from chitin and chitosan; manufacturing, characterization and applications. In: Thomas S., Pius A., Gopi S. Eds. Handbook of Chitin and Chitosan. Volume 2: Composites and Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations. Elsevier, 1–42.
  • 5. Arita, S., Agustina, T.E., Ilmi, N., Dwi, V., Pranajaya, W., Gayatri, R. 2022. Treatment of laboratory wastewater by using Fenton reagent and combination of coagulation-adsorption as pretreatment. Journal of Ecological Engineering, 23(8), 211–221.
  • 6. Bija, S., Yulma, Imra, Aldian, Maulana, A., Rozi, A. 2020. Sintesis biokoagulan berbasis limbah sisik ikan bandeng dan aplikasinya terhadap nilai BOD dan COD limbah tahu di Kota Tarakan. JPHPI, 23(1), 86–92.
  • 7. Hudayni, H. 2018. Sintesis kitosan dari limbah sisik ikan nila (Oreochromis Niloticus) sebagai adsroben logam Cu2+. Jurnal Kimia Universitas Mataram, 4(3), 1–9.
  • 8. Ifa, L., Agus, M.A., Kasmudin, K., Artiningsih, A. 2019. Pengaruh penambahan volume kitosan dari cangkang bekicot terhadap penurunan kadar tembaga air lindi. Jurnal Teknik: Media Pengembangan Ilmu dan Aplikasi Teknik, 18(2), 109–113.
  • 9. Iriana, D.D., Sedjati, S., Yulianto, B. 2018. Kemampuan adsorbsi kitosan dari cangkang udang terhadap logam timbal. Journal of Marine Research, 7(4), 303–309.
  • 10. Irianti, T.T., Kuswadi, Nuranto, S., Budiyatni, A. 2017. Logam Berat dan Kesehatan. Grafika Indah. Yogyakarta.
  • 11. Jamka, Z.N., Mohammed, W.T. 2023. Assessment of the feasibility of modified chitosan beads for the adsorption of nitrate from an aqueous solution. Journal of Ecological Engineering, 24(2), 265–278.
  • 12. Keshvardoostchokami M., Majidi M., Zamani A., Liu B. 2021. A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate Polymers., 273, 118625.
  • 13. Kurita K. 2006. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol, 8(3), 203–226.
  • 14. Lianasari, I.Y., Koesnarpadi, S., Pratiwi, D.R., Munandar, A. 2023. Penentuan variasi komposisi dan pH optimum adsorben kitosan Fe3 O4 berdasarkan persen penyerapan ion Pb2+. Jurnal Atomik. 8(1), 4–8.
  • 15. Marzuki, I., Alwi, R.S., Erniati, Mudyawati, Sinardi, Iryani, A.S. 2018. Chitosan performance of shrimp shells in the biosorption ion metal of cadmium, lead and nickel based on variations pH interaction. Advances in Engineering Research, 165, 6–10.
  • 16. Mokif, L.A., Obaid, Z.H., Juda, S.A. 2024. Synthesis of new composite adsorbents for removing heavy metals and dyes from aqueous solution. Journal of Ecological Engineering, 25(6), 164–179.
  • 17. Novia, Agustina, T.E., Riduan, S., Pangestu, G. 2023. Testing of a laboratory wastewater treatment prototype using coagulation, adsorption, and photoFenton processes. Ecological Engineering & Environmental Technology, 24(5), 202–209.
  • 18. Nucifera, I.F., Zaharah, T.A., Syahbanu, I. 2016. Uji stabilitas kitosan-kaolin sebagai adsorben logam berat Cu(II) dalam air. Jurnal Kimia Khatulistiwa, 5(2), 43–49.
  • 19. Nurhayati, I., Sugito., Pertiwi, A. 2018. Pengolahan air limbah laboratorium dengan adsorpsi dan pretreatment netralisasi dan koagulasi. Jurnal Sains dan Teknologi Lingkungan, 10(2), 125–138.
  • 20. Phuong, D.T.M., Thao, N.T.T., Loc, N.X. 2023. Preparing shrimp shell-derived chitosan with rice husk-derived biochar for efficient Safranin O removal from aqueous solution. Journal of Ecological Engineering, 24(1), 248–259.
  • 21. Sharma, M. 2020. Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO-ZnO tetrapodal hybrid nanocomposite. Materials Today Chemistry, 20, 1–13.
  • 22. Zou, Y. 2024. Cu2+, Cd2+, and Pb2+ ions adsorption from wastewater using polysaccharide hydrogels made of oxidized carboxymethyl cellulose and chitosan grafted with catechol groups. Iranian Polymer Journal, 33(1), 57–66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6d5c01b-eefe-4be5-b65a-2c37fca2de05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.