PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of tonal and broadband hydrodynamic noises of noncavitating underwater propeller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to carry out numerical simulation of the hydrodynamic noise generated by the flow around a non-cavitating underwater propeller. To achieve this goal, hydrodynamic simulation of flow around the propeller was initially done. The unsteady 3-D flow was modelled numerically along with the LES turbulence model. The hydrodynamic parameters calculated for different advance coefficients are visibly in line with the previous experimental works. The turbulent quantities of the hydrodynamic study and the FWH model were used to find spectral distributions of flow noise for different advance coefficients. The results of the acoustic investigation were compared against other numerical results. An array of 100 hydrophones was used to find the directional distribution of the noise around the propeller. The obtained results indicate that, for different advance coefficients, the highest intensity of the noise recorded by different receivers around the propeller occurs in BPF. Furthermore, it has been found that the noise is directionally as well as intensively distributed around the propeller. Noise distributions of noise are presented and discussed for different regimes of propeller rotation. The analysis of the expanded spectrum (broadband analysis) of noise on the propellers has also been done and the contribution of all parts of the propeller to hydrodynamic noise generation are presented.
Rocznik
Tom
Strony
46--53
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • Department of Mechanical and Aerospace Engineering Malek-Ashtar University of Technology Shahin-shahr, P.O. Box 83145/115, Isfahan, Iran
autor
  • Department of Mechanical and Aerospace Engineering Malek-Ashtar University of Technology Shahin-shahr, P.O. Box 83145/115, Isfahan, Iran
autor
  • Department of Mechanical and Aerospace Engineering Malek-Ashtar University of Technology Shahin-shahr, P.O. Box 83145/115, Isfahan, Iran
Bibliografia
  • 1. Amini H., Steen S.: Experimental and Theoretical Analysis of Propeller Shaft Loads in Oblique Inflow, Journal of Ship Research, Vol. 55 No 4, pp. 268-288(21), 2011.
  • 2. Juan J.A., Kazuo N., Claudio M.S., Julio C.A.: Experimental Investigation of the Hydrodynamic Coefficients of a Remotely Operated Vehicle Using a Planar Motion Mechanism, Journal Offshore Mech. Arct. Eng, Vol. 134, Issue 2, 021601 (6 pages), 2012.
  • 3. Ning L., Sande W., Tao G., Xiyou L., Ziyang Y.: Experimental research on the double-peak characteristic of underwater radiated noise in the near field on top of a submarine, Journal of Marine Science and Application, Vol. 10 N0 2, 233-239, DOI: 10.1007/s11804-011-1049-2
  • 4. Zhi-hua L, Ying X, Zhan-zhi W, Song W, Cheng x.: Numerical Simulation and Experimental Study of the new Method of Horseshoe Vortex Control, Journal of Hydrodynamics, Ser. B, Vol. 22, Issue 4, pp. 572–581, 2010.
  • 5. Gaggero S., Villa D., Brizzolara S.: RANS and PANEL method for unsteady flow propeller analysis, Journal of Hydrodynamics, Vol. 22, Issue 5, Supplement 1, pp. 564–569, 2010.
  • 6. Fang-wen H., Shi-tang D.: Numerical Analysis for Circulation Distribution of Propeller Blade, Journal of Hydrodynamics, Vol. 22, Issue 4, pp. 488–493, 2010.
  • 7. Ghasseni H., Ghadimi P.: Numerical analysis of the high skew propeller of an underwater vehicle, Journal of Marine Science and Application Vol. 10 No. 3, 289-299, DOI: 10.1007/s11804-011-1071-4
  • 8. Baltazar J., Falcao de Campos J.A.C.: An iteratively coupled solution of the cavitating flow on marine propellers using BEM, Journal of Hydrodynamics, Ser. B, Vol. 22, Issue 5, Supplement 1, pp. 838–843, 2010.
  • 9. G. Kuiper.: New developments and propeller design, Journal of Hydrodynamics, Vol. 22, Issue 5, Supplement 1, pp. 7–16, 2010.
  • 10. Bong-Jun C., Seokcheon G.: Study on a procedure for propulsive performance prediction for CRP-POD systems, Journal of Marine Science and Technology, Vol. 16 No. 1, pp.1-7, DOI: 10.1007/s00773-010-0108-8
  • 11. Fang-wen H., Shi-tang D.: Numerical simulation of the structure of propeller’s tip vortex and wake, Journal of Hydrodynamics, Vol. 22, Issue 5, Supplement 1, pp. 457–461, 2010.
  • 12. Chao W., Sheng H., Xin C., Miao H.: Applying periodic boundary conditions to predict open water propeller performance, Journal of Marine Science and Application, Vol. 9 No. 3, 262-267, DOI: 10.1007/s11804-010-1005-6
  • 13. Chun-yu G., Wen-ting H., Sheng H.: Using RANS to simulate the interaction and overall performance of propellers and rudders with thrust fins, Journal of Marine Science and Application, Vol. 9 No. 3, 323-327, DOI: 10.1007/s11804-010-1015-4
  • 14. Wilson P.A., Molland, A.F., The development of hydrodynamics: 1860–2010. In, The William Froude Conference: Advances in Theoretical and Applied Hydrodynamics, Past and Future, Portsmouth, UK, 24 – 25, 2010.
  • 15. Liu Z., Xiong Y., Tu C.: Numerical simulation and control of horseshoe vortex around an appendage–body junction, Journal of Fluids and Structures, Vol. 27, Issue 1, pp 23–42, 2011.
  • 16. Alin N., Bensow R.E., Fureby C.; Huuva T., Svennberg U.: Current Capabilities of DES and LES for Submarines at Straight Course, Journal of Ship Research, Vol. 54, Number 3, pp. 184-196(13), 2010.
  • 17. Jong-Yeon H., Kyung-Soo Y., Klaus B.: Direct Numerical Simulation of Turbulent Flow Around a Rotating Circular Cylinder, J. Fluids Eng, Vol. 129, Issue 1, 40-47, doi:10.1115/1.2375133, 2007.
  • 18. Wilcox D. C., Turbulence Modeling for CFD, 3rd edition, DCW Industries, Canada, 2006.
  • 19. Yu-cun P., Huai-xin Z.: Numerical hydro-acoustic prediction of marine propeller noise, Journal of Shanghai Jiaotong University (Science), Vol. 15 No. 6, 707-712, DOI: 10.1007/s12204-010-1073-4
  • 20. Rickard E., B Bark., G Bark.: Implicit LES Predictions of the Cavitating Flow on a Propeller, Journal Fluids Eng, Vol. 132, Issue 4, 041302 (10 pages) doi:10.1115/1.4001342, 2010.
  • 21. Nai-xian L., Rickard E.B., Bark G.: LES of unsteady cavitation on the delft twisted foil, Journal of Hydrodynamics, Ser. B, Vol. 22, Issue 5, Supplement 1, pp. 784–791, 2010.
  • 22. C Fureby.: ILES and LES of Complex Engineering Turbulent Flows, Journal Fluids Eng, Vol. 129, Issue 12, 1514 (10 pages) doi:10.1115/1.2801370, 2007.
  • 23. Oberai A., Ronaldkin F., Hughes T.: Computational procedures for determining structural-acoustic response due to hydrodynamic sources, Comp. Methods Appl. Mech. Engineering Vol. 190, pp. 345–361, 2000 .
  • 24. Oberai A., Roknaldin F., Hughes T.J.R.: Computation of Trailing-Edge Noise due to Turbulent Flow over an Airfoil, AIAA Aeroacoustics Journal Vol. 40, pp.2206–2216, 2002.
  • 25. Caro S., Ploumhans P., Gallez X.: A new formulation based on Lighthill’s Analogy applied to an idealized Automotive HVAC Blower using AcuSolve and Actran/ LA, Proceedings of 11th AIAA/CEAS Aeroacoustics Conference, No. 3015, Monterey, USA, 2005.
  • 26. Damiano C.: Aeroacoustics research in Europe: The CEAS-ASC report on 2009 highlights, Journal of Sound and Vibration, Vol. 329, Issue 22, 25, pp. 4810–4828, 2010.
  • 27. Yu-cun P., Huai-xin Z.: Numerical hydro-acoustic prediction of marine propeller noise, Journal of Shanghai Jiaotong University (Science), Vol. 15 No. 6, 707-712, DOI: 10.1007/s12204-010-1073-4
  • 28. Ruchonnet N., Alligne S., Nicolet C., Avellan F.: Cavitation influence on hydroacoustic resonance in pipe, Journal of Fluids and Structures, 10.001, 2011.
  • 29. Young-Zehr K., Jui-Hsiang K,: Underwater acoustic field and pressure fluctuation on ship hull due to unsteady propeller sheet cavitation, Journal of Marine Science and Technology, Vol. 16 No. 3, pp. 241-253, DOI: 10.1007/s00773-011-0131-4, 2011
  • 30. Bogey C., Bailly C., Juv´e D.,: Computation of flow noise using source terms in linearized Euler’s equations, AIAA Journal Vol. 40 No. 2, pp. 235–243, 2002.
  • 31. Utzmann J., Schwartzkopff T., Dumbser M., Munz C.D.: Heterogeneous Domain Decomposition for CAA, Proceedings of 11th AIAA/CEAS Aeroacoustics Conference, Monterey, USA, 2005.
  • 32. Zhao Y., J. Morris P., The Prediction of Fan Exhaust Noise Propagation, 11th AIAA Aeroacoustics Conference, No. 2005-2815, Monterey, USA, 2005.
  • 33. Ewert R., Schroder W.,: Acoustic Perturbation Equations based on Flow decomposition via Source Filtering, Journal of Computational Physics Vol. 188, pp. 365–398, 2003.
  • 34. Seo J., Moon Y., Linearized perturbed compressible equations for low Mach number aeroacoustics, Journal of Computational Physics Vol. 218 No. 2, pp 702–719, 2006.
  • 35. Ffowcs-Williams J. E., Hawkings D.L.: Sound Generation by Turbulence and Surfaces in Arbitrary Motion, Proc. Roy. Soc. London, A264:321-342, 1969.
  • 36. Proudman I.: The Generation of Noise by Isotropic Turbulence, Proc. Roy. Soc., A214:119, 1952.
  • 37. Y. Pan, H. Zhang,: Numerical Hydro-Acoustic Prediction of Marine Propeller Noise, Journal of Shanghai Jiaotong Univ 15(6), pp. 707-712, 2010.
  • 38. Seol H., Such J-C., Lee S.,: Development Of Hybrid Method for Prediction of Underwater Propeller Noise, Journal of Sound and Vibration.Vol..288, pp. 345-360, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6d544d4-ef36-4d9f-a950-bb52cef69790
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.