Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Evaluation of platinum nanoparticles effect on steroidogenesis based on the determination of testosterone and 17β-estradiol levels in Leydig cells (R2C)
Języki publikacji
Abstrakty
Coraz popularniejsze zastosowanie nanocząstek platyny (Pt-NPs) powoduje, że mogą one systematycznie uwalniać się do środowiska, przede wszystkim do powietrza (w tym powietrza środowiska pracy), ale także do wody, ścieków i gleby, zarówno z procesów produkcyjnych, jak i podczas ich przetwarzania i stosowania oraz w wyniku utylizacji odpadów. Dane dotyczące toksyczności Pt-NPs są ograniczone. Biorąc pod uwagę zdolność Pt-NPs do bioakumulacji w organizmach żywych, ważne jest poznanie długotrwałych skutków narażenia, jakim jest wpływ na funkcje rozrodcze, w tym produkcję hormonów (testosteronu i 17β-estradiolu). Celem pracy była ocena wpływu Pt-NPs na sekrecję hormonów steroidowych w komórkach Leydiga. W komórkach Leydiga linii R2C pochodzących z jąder szczura oceniano działanie cytotoksyczne Pt-NPs <50 nm, badając ich wpływ na aktywność metaboliczną komórek (test MTT) oraz uszkodzenie błon komórkowych (test NRU). Zaburzenia steroidogenezy w komórkach oceniano poprzez oznaczanie sekrecji testosteronu (T) i 17β-estradiolu (E2), stosując kompetencyjny test ELISA. Pt-NPs działały cytotoksycznie na komórki R2C zależnie od stężenia, ale efekt ten był widoczny tylko w teście MTT (zmniejszenie przeżywalności komórek o 50% notowano przy stężeniach powyżej 250 μg/ml). Pt-NPs w stężeniach nie działających cytotoksycznie (8 ÷ 125 μg/ml) powodowały zwiększenie sekrecji T i E2 w porównaniu z kontrolą. Stężenie E2 utrzymywało się na poziomie porównywalnym z działaniem induktora (forskoliny). Uzyskane wyniki, chociaż mają charakter przesiewowy, mogą wskazywać na potencjalne działanie modulujące proces steroidogenezy w gonadach pod wpływem Pt-NPs.
Due to the increasingly popular application of platinum nanoparticles (Pt-NPs), they can be continuously released to the environment, mainly to the air (including the air in the working environment), but also to water, wastewater and soil, both from production processes, during their processing and use, and as a result of waste disposal. Pt-NPs toxicity data are limited. Given the ability of Pt-NPs to bioaccumulate in living organisms, it is important to know the long-term effects of exposure, such as the impact on reproductive functions, including hormone (testosterone and 17β-estradiol) production. The aim of this study was to assess the effect of Pt-NPs on steroid hormone secretion in Leydig cells. Cytotoxicity of Pt-NPs < 50 nm was assessed in the R2C Leydig cell line derived from rat testicles by examining their effects on cellular metabolic activity (MTT assay) and cell membrane damage (NRU assay). Abnormalities of steroidogenesis in cells were evaluated by determination of testosterone (T) and 17β-estradiol (E2) secretion with the competitive ELISA test. Pt-NPs exerted a cytotoxic effect on R2C cells depending on the concentration, but this effect was seen only in the MTT assay (50% reduction in cell survival was noted at concentrations above 250 µg/ml). Pt-NPs at non-cytotoxic concentrations (8–125 µg/ml) increased the secretion of T and E2 as compared with control. The E2 concentration was maintained at a level comparable to the effect of an inducer (forskolin). The results, yet having a screening nature, may indicate a potential steroidogenesis-modulating effect of Pt-NPs in gonads.
Czasopismo
Rocznik
Tom
Strony
5--28
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy 00-701 Warszawa, ul. Czerniakowska 16 POLAND
autor
- Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy 00-701 Warszawa, ul. Czerniakowska 16 POLAND
- Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy 00-701 Warszawa, ul. Czerniakowska 16 POLAND
autor
- Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy 00-701 Warszawa, ul. Czerniakowska 16 POLAND
autor
- Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy 00-701 Warszawa, ul. Czerniakowska 16 POLAND
Bibliografia
- 1. Abdou H.S., Bergeron F., Tremblay J.J. (2014). A cellautonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis. Mol. Cell. Biol. 34(23), 4257–4271.
- 2. Ahmed K.E.M., Frøysa H.G., Karlsen O.A. i in. (2018). LC-MS/MS based profiling and dynamic modelling of the steroidogenesis pathway in adrenocarcinoma H295R cells. Toxicol. In Vitro 52, 332–341.
- 3. Bara N., Kaul G. (2018). Enhanced steroidogenic and altered antioxidant response by ZnO nanoparticles in mouse testis Leydig cells. Toxicol. Ind. Health 34(8), 571–588.
- 4. Borisova T. (2018). Nervous system injury in response to contact with environmental, engineered and planetary microand nano-sized particles. Front. Physiol. 9, 728. DOI: 10.3389/ fphys.2018.00728.
- 5. Botteri Principato N.L., Suarez J.D., Laws S.C. i in. (2018). The use of purified rat Leydig cells complements the H295R screen to detect chemical-induced alterations in testosterone production. Biol. Reprod. 98(2), 239–249.
- 6. Chen T-M., Czerwiec F.S., Puett D. (2016). Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization. Biochem. Biophys. Rep. 5, 305–312.
- 7. Czubacka E., Czerczak S. (2019). Are platinum nanoparticles safe to human health? Med. Pr. 70(4), 487–495.
- 8. Demir V., Bucher J., Kropf C. i in. (2020). Comparative study of cytotoxicity by platinum nanoparticles and ions in vitro systems based on fish cell lines. Toxicol. In Vitro 66, 104859. DOI: 10.1016/j.tiv.2020.104859.
- 9. Diabaté S., Weiss C., Mülhopt S. i in. (2009). Biological effects in human lung cells exposed to platinum nanoparticles aerosol. European Aerosol Conference, 2009 Sept 11, Karlsruhe, Germany.
- 10. Engeli R.T., Fürstenberger C., Kratschmar D.V. i in. (2018). Currently available murine Leydig cell lines can be applied to study early steps of steroidogenesis but not testosterone synthesis. Heliyon 4, e00527. DOI: 10.1016/j.heliyon.2018. e00527.
- 11. Fröhlich E., Salar-Behzadi S. (2014). Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int. J. Mol. Sci. 15(3), 4795–4822.
- 12. Gatto F., Moglianetti M., Pompa P.P. i in. (2018). Platinum nanoparticles decrease reactive oxygen species and modulate gene expression without alteration of immune responses in THP-1 monocytes. Nanomaterials (Basel) 8(6), 392.
- 13. Haggard D.E., Karmaus A.L., Martin M.T. i in. (2018). High-throughput H295R steroidogenesis assay: utility as an alternative and a statistical approach to characterize effects on steroidogenesis. Toxicol. Sci. 162(2), 509–534.
- 14. Hecker M., Giesy J.P. (2008). Novel trends in endocrine disruptor testing: the H295R Steroidogenesis Assay for identification of inducers and inhibitors of hormone production. Anal. Bioanal. Chem. 390(1), 287–291.
- 15. Hecker M., Hollert H., Cooper R. i in. (2011). The OECD validation program of the H295R steroidogenesis assay: Phase 3. Final inter-laboratory validation study. Environ. Sci. Pollut. Res. Int. 18, 503–515.
- 16. Heneweer M., van den Berg M., Sanderson J.T. (2004). A comparison of human H295R and rat R2C cell lines as in vitro screening tools for effects on aromatase. Toxicol. Lett. 146, 183–194.
- 17. INVITTOX Protocol No 17: MTT Assay (1990). The ERGATT/FRAME Data Bank of In Vitro Techniques in Toxicology, Nottingham.
- 18. INVITTOX Protocol No 64: The Neutral Red Cytotoxicity Assay (1992). The ERGATT/FRAME Data Bank of In Vitro Techniques in Toxicology, Nottingham.
- 19. Jeyaraj M., Gurunathan S., Qasim M. i in. (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials (Basel) 9(12), 1719. DOI: 10.3390/ nano9121719
- 20. Karmaus A.L., Toole C.M., Filer D.L. i in. (2016). Highthroughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells. Toxicol. Sci. 150(2), 323–332.
- 21. Khanal N., Ahmed S.S., Kalra M. i in. (2020). The effects of hypogonadism on quality of life in survivors of germ cell tumors treated with surgery alone versus surgery plus platinum-based chemotherapy. Support Care Cancer 28(7), 3165–3170.
- 22. Kroll A., Pillukat M.H., Hahn D. i in. (2012). Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 86(7), 1123–1136.
- 23. Kuijpers, E., A. Pronk, R. Kleemann i in. (2018). Cardiovascular effects among workers exposed to multiwalled carbon nanotubes. Occup. Environ. Med. 75(5), 351–358.
- 24. Labrador-Rached C.J., Browning R.T., Braydich-Stolle L.K. i in. (2018). Toxicological implications of platinum nanoparticle exposure: stimulation of intracellular stress, inflammatory response, and Akt signaling in vitro. J. Toxicol. 2018, 1367801. DOI: 10.1155/2018/1367801.
- 25. Larese Filon F., Bello D., Cherrie J.W. i in. (2016). Occupational dermal exposure to nanoparticles and nano-enabled products: Part 1. Factors affecting skin absorption. Int. J. Hyg. Environ. Health 219(6), 536–544.
- 26. Larson J.K., Carvan M.J. 3rd, Hutz R.J. (2014). Engineered nanomaterials: an emerging class of novel endocrine disruptors. Biol. Reprod. 91(1), 20, 1–8.
- 27. Lauretta R., Sansone A., Sansone M. i in. (2019). Endocrine disrupting chemicals: effects on endocrine glands. Front. Endocrinol. 10, 178.
- 28. Leisegang K., Henkel R. (2018). The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells. Reprod. Biol. Endocrinol. 16, 26.
- 29. Maglich J.M., Kuhn M., Chapin R.C. i in. (2014). More than just hormones: H295R cells as predictors of reproductive toxicity. Reprod. Toxicol. 45, 77–86.
- 30. Maines M.D. (1990). Effect of cis-platinum on heme, drug, and steroid metabolism pathways: possible involvement in nephrotoxicity and infertility. Crit. Rev. Toxicol. 21(1), 1–20.
- 31. Mukherjee S., Sravan V., Roy A. i in. (2021). Acute toxicity, biodistribution, and pharmacokinetics studies of pegylated platinum nanoparticles in mouse model. Adv. NanoBioMed Res. 1(7), 2000082.
- 32. Nakano Y., Yamashita T., Okuno M. i in. (2016). In vitro steroid profiling system for the evaluation of endocrine disruptors. J. Biosci. Bioeng. 122(3), 370–377.
- 33. Nielsen F.K., Hansen C.H., Fey J.A. i in. (2012). H295R cells as a model for steroidogenic disruption: a broader perspective using simultaneous chemical analysis of 7 key steroid hormones. Toxicol. In Vitro 26, 343–350.
- 34. Odermatt A., Strajhar P., Engeli R.T. (2016). Disruption of steroidogenesis: cell models for mechanistic investigations and as screening tools. J. Steroid. Biochem. Mol. Biol. 158, 9–21.
- 35. OECD (2011). OECD Guideline for the testing of chemicals. H295R Steroidogenesis Assay, https://ntp.niehs.nih.gov/ iccvam/suppdocs/feddocs/oecd/oecd-tg456-2011-508.pdf [dostęp: 23.05.2023].
- 36. Pietroiusti, A., H. Stockmann-Juvala, F. Lucaroni i in. (2018). Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1513.
- 37. Poh T.J., Ali N.A.B.M., Aogáin M.M. i in. (2018). Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part. Fibre Toxicol. 15(1), 46.
- 38. Priyam, A., Singh P.P., Gehlout S. (2018). Role of endocrinedisrupting engineered nanomaterials in the pathogenesis of type 2 diabetes mellitus. Front. Endocrinol. 9, 704. DOI: 10.3389/fendo.2018.00704.
- 39. Rao R.M., Jo Y., Leers-Sucheta S. i in. (2003). Differential regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of SR-B1-mediated selective cholesteryl ester transport. Biol. Reprod. 68, 114–121.
- 40. Schulte P.A., Leso V., Niang M. i in. (2019). Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand. J. Work Environ. Health 45(3), 217–238.
- 41. Simon V., Avet Ch., Grange-Messent V. i in. (2017). Carbon black nanoparticles inhibit aromatase expression and estradiol secretion in human granulosa cells through the ERK1/2 pathway. Endocrinology 158(10), 3200–3211.
- 42. Stapleton P.A., Hathaway Q.A., Nichols C.E. i in. (2018). Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome. Part. Fibre Toxicol. 15, 3.
- 43. Stone V., Miller M.R., Clift M.J.D. i in. (2017). Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ. Health Perspect. 125(10), 106002.
- 44. Strajhar P., Tonoli D., Jeanneret F. i in. (2017). Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids. Toxicology 381, 51–63.
- 45. Thangam Y., Veeramani C. (2015). Toxicity assay on platinum nano particles to fresh water fish “Cirrhinus mrigala”. Int. J. Sci. Res. 4(6), 3102–3108.
- 46. Umezawa M., Onoda A., Korshunova I. i in. (2018). Maternal inhalation of carbon black nanoparticles induces neurodevelopmental changes in mouse offspring. Part. Fibre Toxicol. 15(1), 36.
- 47. Wang T., Rainey W.E. (2012). Human adrenocortical carcinoma cell lines. Mol. Cell. Endocrinol. 351(1), 58–65.
- 48. Young F., Asaduzzaman M., Austin S. i in. (2017). Effect of glyphosate and roundup on H295R, T47D and murine follicular cell viability and estrogen synthesis in vitro. Adv. J. Toxicol. Curr. Res. 1(2), 084–093.
- 49. Zapór L. (2016). Effects of silver nanoparticles of different sizes on cytotoxicity and oxygen metabolism disorders in both reproductive and respiratory system cells. Arch. Environ. Protect. 42, 32–47.
- 50. Zapór L. (2018). Zagrożenia wynikające ze stosowania nanotechnologii w środkach smarnych i sposoby ich monitorowania [Hazards resulting from the use of nanomaterials in lubricants and ways of monitoring them]. Bezp. Pr. 1, 18–21.
- 51. Zapór L., Oberbek P. (2020). Nanomaterials in the work environment. [W:] Emerging chemical risks in the work environment. [Red.] M. Pośniak. Taylor & Francis.
- 52. Zirkin B.R., Papadopoulos V. (2018). Leydig cells: formation, function, and regulation. Biol. Reprod. 99(1), 101–111.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6d3fa2b-74ef-4fa4-89c3-816a76c14e4c